首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New hydrated lanthanide phthalates have been hydrothermally prepared with cerium and neodymium in different reaction media involving water or mixed water-ethanol solvent. The monohydrated Ln2(1,2-bdc)3(H2O) (Ln=Ce or Nd) and dihydrated Nd2(1,2-bdc)3(H2O)2 forms have been characterized by single-crystal analysis. Their structures consist of infinite inorganic chains of lanthanide-centered polyhedra linked to each other through the phthalate ligands in order to generate mixed organic-inorganic layered structure. The two hydrated structures differ by the number of terminal water species attached to the lanthanide cations, which induce symmetry change from a triclinic (Nd2(1,2-bdc)3(H2O)2) to an orthorhombic (Nd2(1,2-bdc)3(H2O)2) cell for neodymium whereas the cerium-based phase only exists in the monohydrated form, with two distinct symmetries (orthorhombic or triclinic). Structural comparisons with the other members of the lanthanide phthalate series with identical chemical formula are also discussed. Thermal X-ray diffraction experiment indicates that the transformation from dihydrate form into the monohydrated form does not occur during a heating process.  相似文献   

2.
The monolignol glucosides (1,2-13C2)-p-glucocoumaryl alcohol, (1,2-13C2)-coniferin and (1,2-13C2)-syringin, and the glucosides of (1,2-13C2)-p-coumaric, (1,2-13C2)-ferulic and (1,2-13C2)-sinapic acids were synthesized by condensation of the corresponding aldehydes with (1,2,3-13C3)-malonic acid. The free acids were converted to the acyl chlorides prior to their reduction to alcohols.  相似文献   

3.
A very rapid and efficient method has been developed for the synthesis of vicinal bromoazides directly from olefin using N,N-dibromo-p-toluenesulfonamide (TsNBr2) without any catalyst. The reaction is extremely fast which goes into completion instantaneously to produce bromoazides. This procedure is applicable to various olefins such as cinnamates, chalcone, styrenes, and acrylate to give the corresponding 1,2-bromoazide in an excellent yield.  相似文献   

4.
Three new compounds Ca(HF2)2, Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) were obtained in the system metal(II) fluoride and anhydrous HF (aHF) acidified with excessive PF5. The obtained polymeric solids are slightly soluble in aHF and they crystallize out of their aHF solutions. Ca(HF2)2 was prepared by simply dissolving CaF2 in a neutral aHF. It represents the second known compound with homoleptic HF environment of the central atom besides Ba(H3F4)2. The compounds Ba4F4(HF2)(PF6)3 and Pb2F2(HF2)(PF6) represent two additional examples of the formation of a polymeric zigzag ladder or ribbon composed of metal cation and fluoride anion (MF+)n besides PbF(AsF6), the first isolated compound with such zigzag ladder. The obtained new compounds were characterized by X-ray single crystal diffraction method and partly by Raman spectroscopy. Ba4F4(HF2)(PF6)3 crystallizes in a triclinic space group P1¯ with a=4.5870(2) Å, b=8.8327(3) Å, c=11.2489(3) Å, α=67.758(9)°, β=84.722(12), γ=78.283(12)°, V=413.00(3) Å3 at 200 K, Z=1 and R=0.0588. Pb2F2(HF2)(PF6) at 200 K: space group P1¯, a=4.5722(19) Å, b=4.763(2) Å, c=8.818(4) Å, α=86.967(10)°, β=76.774(10)°, γ=83.230(12)°, V=185.55(14) Å3, Z=1 and R=0.0937. Pb2F2(HF2)(PF6) at 293 K: space group P1¯, a=4.586(2) Å, b=4.781(3) Å, c=8.831(5) Å, α=87.106(13)°, β=76.830(13)°, γ=83.531(11)°, V=187.27(18) Å3, Z=1 and R=0.072. Ca(HF2)2 crystallizes in an orthorhombic Fddd space group with a=5.5709(6) Å, b=10.1111(9) Å, c=10.5945(10) Å, V=596.77(10) Å3 at 200 K, Z=8 and R=0.028.  相似文献   

5.
The three stereoisomeric glycols (CHOHCH3)2C6H4Cr(CO)3 have been prepared via 1,2-diformyl- and 1,2-diacetyl-benchrotrenes. The racemic (pseudosymmetric) form and the two meso (pseudoasymmetric) forms of the glycols have been identified by chemical derivatization and analysis of the spectroscopic data. The photochemical decomplexation of these glycols is a specific route for the preparation of the two corresponding benzenic glycols. The stereoselectivity which has been observed in some reactions is discussed.  相似文献   

6.
In the spectrum of the delayed fluorescence (DF) of pyrene, caused by triplet-triplet annihilation T1 + T1 → Sn + So (n = 1,2), a strong DF S1 → So and a very weak DF S2 → s0 are observed. The DF S1→ So is quenched selectively by compounds like N-diethylanine or triethylamine which do not quench T1 of pyrene.  相似文献   

7.
Crystals of C24H36N6O6Cr2 are monoclinic, a 15.380(3), b 13.965(2), c 14.459(3) Å, β 92.18(1)°; Z = 4; space group P21 with two independent molecules in the asymmetric unit. The crystal structure was determined from X-ray diffractometer data by direct methods and refined by least-squares methods to R = 0.066 for 2430 independent observed reflections. It consists of discrete molecules, in which each Cr atom is surrounded by three cis carbonyl groups and three cis nitrogen atoms of three 3,3,4,4-tetramethyl-1,2-diazetine ligands, in a deformed octahedral coordination. There is no evidence of intramolecular Cr ? Cr interaction.  相似文献   

8.
The protonolysis of the PtC bond in trans-[PtH(CH2CN)(PPh32] in methanol/1,2- dichloroethane is shown to take place by a two step mechanism involving oxidative addition to the metal center followed by reductive elimination of CH3CN to give trans-[PtHCl(PPh3)2].  相似文献   

9.
The reaction of n-butyllithium chelated to N,N,N′,N′-tetramethylethylenediamine (TMEDA) with acenaphthene results in 1,2-hydrogen abstraction to give the dilithio complex of acenaphthylene, [Li(CH3)2N(CH2)2N(CH3)2]2[C12H8]. This compound was isolated as a crystalline product and characterized by single crystal X-ray crystallography. [Li(CH3)2N(CH2)2N(CH3)2]2[C12H8] crystallizes with a unit cell of a = 23.164(10), b = 25.609(10) and c = 8.495(6) Å in the orthorhombice space group Fdd2. The calculated density is 1.04 g cm?3 for 8 molecules per unit cell. The observed density is 1.03(4) g cm?3. 1412 unique reflections were measured on a full circle X-ray diffractometer. The light atom, acentric structure was solved by the symbolic addition technique and refined by full matrix least squares to R1 = 0.058 and R2 = 0.056.The acenaphthylene fragment is nearly planar. The effect of charge transfer is evidenced in the short C(3)C(4) bond distance of 1.30(3) Å and the lengthening of the C(1)C(2) bond length from the localized olefinic bond distance of 1.34 to 1.42(2) Å. The two LiTMEDA fragments are coordinated to both sides of the five membered carbon atom ring of the acenaphthylene group.  相似文献   

10.
A laser-induced chemical reaction of I2 + C2H2 has been studied and the formation of cis and tians isomers of 1,2-diiodoethylene has been observed. The ratio of the two isomers of 1,2-diodoethylene changes markedly upon changing the laser wavelengths of excitation of the I2 molecule  相似文献   

11.
1,2-Eliminations are a varied and extensive set of dissociations of ions in the gas phase. To understand better such dissociations, elimination of CH2=CH2 and CH3CH3 from (CH3)2NH+CH2CH3 (1) and of CH4 from (CH3)2NH2+ are characterized by quantum chemical calculations. Stretching of the CN bond to ethyl is followed by shift of an H from methyl to the bridging position in ethyl and then to N to reach (CH3)2NH2+ + CH2=CH2 from 1. CH3CH3 elimination by H-transfer to C2H5+ to form CH3NH+=CH2 + CH3CH3 also takes place. (CH3)2NH2+ eliminates methane by CN bond extension followed by β-H-transfer to give CH2=NH+ + CH4. Low-energy reactions resembling complex-mediated 1,2-eliminations occur and constitute a hitherto largely unrecognized type of reaction. As in many complex-mediated reactions, these reactions transfer H between incipient fragments. They are distinguished from complex-mediated processes by the fragments not being able to rotate freely relative to each other near the transition state for reaction, as they do in complexes. Most 1,2-eliminations are ion-neutral complex-mediated, occur by the just described lower energy reactions, have 1,1-like transition states, or utilize highly asynchronous 1,2 transition states. All of these avoid synchronized 1,2-transition states that would violate conservation of orbital symmetry.  相似文献   

12.
Two new potassium uranyl molybdates K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6 have been obtained by solid state chemistry . The crystal structures were determined by single crystal X-ray diffraction data, collected with MoKα radiation and a charge coupled device (CCD) detector. Their structures were solved using direct methods and Fourier difference techniques and refined by a least square method on the basis of F2 for all unique reflections, with R1=0.046 for 136 parameters and 1412 reflections with I?2σ(I) for K2(UO2)2(MoO4)O2 and R1=0.055 for 257 parameters and 2585 reflections with I?2σ(I) for K8(UO2)8(MoO5)3O6. The first compound crystallizes in the monoclinic symmetry, space group P21/c with a=8.250(1) Å, b=15.337(2) Å, c=8.351(1) Å, β=104.75(1)°, ρmes=5.22(2) g/cm3, ρcal=5.27(2) g/cm3 and Z=4. The second material adopts a tetragonal unit cell with a=b=23.488(3) Å, c=6.7857(11) Å, ρmes=5.44(3) g/cm3, ρcal=5.49(2) g/cm3, Z=4 and space group P4/n.In both structures, the uranium atoms adopt a UO7 pentagonal bipyramid environment, molybdenum atoms are in a MoO4 tetrahedral environment for K2(UO2)2(MoO4)O2 and MoO5 square pyramid coordination in K8(UO2)8(MoO5)3O6. These compounds are characterized by layered structures. The association of uranyl ions (UO7) and molybdate oxoanions MoO4 or MoO5, give infinite layers [(UO2)2(MoO4)O2]2− and [(UO2)8(MoO5)3O6]8− in K2(UO2)2(MoO4)O2 and K8(UO2)8(MoO5)3O6, respectively. Conductivity properties of alkali metal within the interlayer spaces have been measured and show an Arrhenius type evolution.  相似文献   

13.
Crystal structures of Pb(MoO2)2(PO4)2 and Ba(MoO2)2(PO4)2 were determined. Both compounds contain the molybdyl group MoO2. The monoclinic unit-cell parameters are a = 6.353(7), b = 12.289(4), c = 11.800 Å, β = 92°56(6), and Z = 4 for the lead salt and a = 6.383(8), b = 7.142(7), c = 9.953(8) Å, β = 95°46(8), and Z = 2 for the barium salt. P21c is the common space group. The R values are respectively R = 0.027 and R = 0.031 for 1964 and 1714 independent reflections. The frameworks built up by a three-dimensional network of monophosphate PO4 and molybdyl MoO2 groups are similar, characterized mainly by corner-sharing PO4 and MoO6 polyhedra. Two oxygen atoms of each MoO6 group are bonded to the molybdenum atom only as in other molybdyl salts.  相似文献   

14.
New sodium orthophosphates of general formula Na2M3(PO4)3 belonging to the alluaudite-type structure have been synthesized and characterized by neutron and X-ray powder diffraction. The nature of the M3 elements (M3=GaMn2, GaCd2, InMn2 and FeMnCd) was chosen in order to analyze their influence on electrical and magnetic properties. The conductivity of these materials was measured by the complex impedance method and the transport mechanism was studied from complex permittivities and modulus formalism. Electrical results including charge/discharge experiments showed two main behaviors: GaCd2 and FeMnCd behave as purely ionic conductors whereas GaMn2 and InMn2 are mixed ionic-electronic conductors. The magnetic susceptibility data reveal the antiferromagnetic behavior of FeMnCd, InMn2 and GaMn2, with a weak ferromagnetic transition at low temperatures.  相似文献   

15.
The reactions (I) Hg2Cl2(s) + Br2(g) and (II) HgCl2(s) + HgBr2(s) have been investigated by an X-ray method. Both the reactions yield two forms of the mixed halide HgClBr, designated as α-HgClBr and β-HgClBr. The cell parameters of the two are as follows:α-HgClBr: a = 6.196 A?, b = 13.12 A?, c = 4.37 A?, z = 4, ? = 5.91 g/cm3. The powder pattern and cell parameters are similar to that of HgCl2. Therefore it is probable that the chlorine atoms, in the linear halogenHghalogen molecules of HgCl2 structure have been replaced by bromines, and since the radius of the bromine atom is larger than that of chlorine, the lattice is larger in this case.β-HgClBr: a = 6.78 A?, b = 13.175 A?, c = 4.17 A?, z = 4, ? = 5.40. These parameters are the same as those reported in the literature for β-Hg(ClBr)2, and its X-ray powder pattern is similar to HgCl2. Therefore this phase also has linear halogenHghalogen molecules but the distribution of Cl and Br atoms is perhaps random.Heating the products (I) and (II) up to the melting point increases the amount of α phase and decreases the β phase, whereas crystallization increases the β phase. DTA study has supported the X-ray findings.  相似文献   

16.
Tetsuya Sengoku 《Tetrahedron》2008,64(35):8052-8058
An enantiomerically and diastereomerically pure route has been developed for the first asymmetric synthesis of (1S,2R,3R,5R,7aR)- and (1S,2R,3R,5S,7aR)-1,2-dihydroxy-3,5-dihydroxymethylpyrrolizidine, hyacinthacine B1 and B2, featuring efficient and stereodefined elaboration via the asymmetric dihydroxylation (AD) of the functionalized homochiral pyrrolidine derivative prepared from (S)-(−)-2-pyrrolidone-5-carboxylic acid.  相似文献   

17.
Neutron diffraction has been used to study the variation of antiferromagnetic order in the antimony isomorphous MnSb2O4 (TN ~ 60 K) and NiSb2O4 (TN ~ 46 K). The magnetic moments have been related to the Mn2+ and Ni2+ spins and magnetostrictive effects have been interpreted. The influence of the method of synthesis is mentioned: polycrystalline MnSb2O4 has been obtained from hydrothermal synthesis. Orthorhombic distortions are not connected with magnetic interactions but with structural defects.  相似文献   

18.
Addition of ethynylferrocene to nido-1,2-(CpRuH)2B3H7 (1) at ambient temperature leads to nido-1,2-(CpRu)2(1,5-μ-C{Fc}Me)B3H7 (2, 3) and closo-4-Fc-1,2-(CpRuH)2-4,6-C2B2H3 (4). Compounds 2 and 3 represent a pair of geometric isomers, nido-species in which the regiochemistry of the alkyne reduction conforms to the Markovnikoff rule. Compound 4 is an octahedral structure in which the inserted alkyne is on an open face of the closo cluster.  相似文献   

19.
Two new mixed organic-inorganic uranyl molybdates, (C6H14N2)3[(UO2)5(MoO4)8](H2O)4 (1) and (C2H10N2)[(UO2)(MoO4)2] (2), have been obtained by hydrothermal methods. The structure of 1 [triclinic, , Z=1, a=11.8557(9), b=11.8702(9), c=12.6746(9) Å, α=96.734(2)°, β=91.107(2)°, γ=110.193(2)°, V=1659.1(2) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.058, which was calculated for the 5642 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl square bipyramids, uranyl pentagonal bipyramids, and MoO4 tetrahedra, with composition [(UO2)5(MoO4)8]6−, that are parallel to (−101). H2O groups and 1,4-diazabicyclo [2.2.2]-octane (DABCO) molecules are located in the interlayer, where they provide linkage of the sheets. The structure of 2 [triclinic, , Z=2, a=8.4004(4), b=11.2600(5), c=13.1239(6) Å, α=86.112(1)°, β=86.434(1)°, γ=76.544(1)°, V=1203.14(10) Å] has been solved by direct methods and refined on the basis of F2 for all unique reflections to R1=0.043, which was calculated for 5491 unique observed reflections (|Fo|?4σF). The structure contains topologically novel sheets of uranyl pentagonal bipyramids and MoO4 tetrahedra, with composition [(UO2)(MoO4)2]2−, that are parallel to (110). Ethylenediamine molecules are located in the interlayer, where they provide linkage of the sheets. All known topologies of uranyl molybdate sheets of corner-sharing U and Mo polyhedra can be described by their nodal representations (representations as graphs in which U and Mo polyhedra are given as black and white vertices, respectively). Each topology can be derived from a simple black-and-white graph of six-connected black vertices and three-connected white vertices by deleting some of its segments and white vertices.  相似文献   

20.
α-Ca3(BN2)2 crystallizes in the cubic system (space group: ) with one type of calcium ions disordered over of equivalent (8c) positions. An ordered low-temperature phase (β-Ca3(BN2)2) was prepared and found to crystallize in the orthorhombic system (space group: Cmca) with lattice parameters: , , and . Structure refinements on the basis of X-ray powder data have revealed that orthorhombic β-Ca3(BN2)2 corresponds to an ordered super-structure of cubic α-Ca3(BN2)2. The space group Cmca assigned for β-Ca3(BN2)2 is derived from by a group-subgroup relationship.DSC measurements and temperature-dependent in situ X-ray powder diffraction studies showed reversible phase transitions between β- and α-Ca3(BN2)2 with transition temperatures between 215 and 240 °C.The structure Sr3(BN2)2 was reported isotypic with α-Ca3(BN2)2 () with one type of strontium ions being disordered over of equivalent (2c) positions. In addition, a primitive () structure has been reported for Sr3(BN2)2. Phase stability studies on Sr3(BN2)2 revealed a phase transition between a primitive and a body-centred lattice around 820 °C. The experiments showed that both previously published structures are correct and can be assigned as α-Sr3(BN2)2 (, high-temperature phase), and β-Sr3(BN2)2 (, low-temperature phase).A comparison of Ca3(BN2)2 and Sr3(BN2)2 phases reveals that the different types of cation disordering present in both of the cubic α-phases () have a directing influence on the formation of two distinct (orthorhombic and cubic) low-temperature phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号