首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The broad absorption band in Cs2 having peak intensity near 4800 Å is analyzed through computational simulation of the experimental spectrum using the classical method. The absorption, which terminates in a weak satellite at 5223 Å, can be interpreted in terms of a single transition from the ground state (Re = 4.65 Å, ωe = 42 cm−1) to an upper state having Te = 20 470 cm−1, ωe = 33 cm−1 and Re = 5.28 Å. The absolute absorption strength is roughly consistent with published lifetime data, but its reliability is limited by thermodynamic uncertainties stemming from the remaining uncertainty in the Cs2 ground state dissociation enegy. The paper includes a summary of diatomic radiation relations pertinent to the analysis of low-resolution spectra, and a brief discussion of the reduced potential method applied to the alkali dimer ground states.  相似文献   

2.
To evaluate the contribution of local pulsed heating of light-absorbing microregions to biochemical activity, irradiation of Escherichia coli was carried out using femtosecond laser pulses (λ = 620 nm, τp=3 × 10−13 s, fp = 0.5 Hz, Ep = 1.1 × 10−3J cm−2, Iav = 5.5 × 10−4 W cm−2, Ip = 109 W cm−2) and continuous wave (CW) laser radiation (λ = 632.8 nm, I = 1.3 W cm−2). The irradiation dose required to produce a similar biological effect (a 160%–190% increase in the clonogenic activity of the irradiated cells compared with the non-irradiated controls) is a factor of about 103 lower for pulsed radiation than for CW radiation (3.3 × 10−1 and 7.8 × 102 J cm−2 respectively). The minimum size of the microregions transiently heated on irradiation with femtosecond laser pulses is estimated to be about 10 Å, which corresponds to the size of the chromophores of hypothetical primary photoacceptors—respiratory chain components.  相似文献   

3.
Pulse radiolysis transient UV–visible absorption spectroscopy was used to study the UV–visible absorption spectrum (225–575 nm) of the phenyl radical, C6H5(), and kinetics of its reaction with NO. Phenyl radicals have a strong broad featureless absorption in the region of 225–340 nm. In the presence of NO phenyl radicals are converted into nitrosobenzene. The phenyl radical spectrum was measured relative to that of nitrosobenzene. Based upon σ(C6H5NO)270 nm=3.82×10−17 cm2 molecule−1 we derive an absorption cross-section for phenyl radicals at 250 nm, σ(C6H5())250 nm=(2.75±0.58)×10−17 cm2 molecule−1. At 295 K in 200–1000 mbar of Ar diluent k(C6H5()+NO)=(2.09±0.15)×10−11 cm3 molecule−1 s−1.  相似文献   

4.
A tentative vibrational assignment of the 2B12A1 absorption system of NO2 in solid Xe is reported. About 65 bands were analysed, yielding normal vibration energies of ν1 = 1230, ν2 = 450 and ν3 = 2040 cm−1. The electronic transition energy can be estimated to be T010 = 14160 cm−1 (14220 cm−1 for the gaseous phase). These observations are in good agreement with predictions made using ab initio calculations. Evidence for Renner—Teller interaction is documented by a systematic staggering of frequency intervals between successive bands in the ν2 progression of the state.  相似文献   

5.
We have studied pulsed laser-induced oxygen deficiencies at rutile TiO2 surfaces. The crystal surface was successfully reduced by excimer laser irradiation, and an oxygen-deficient TiO2−δ layer with 160 nm thickness was formed by means of ArF laser irradiation at 140 mJ/cm2 for 2000 pulses. The TiO2−δ layer fundamentally maintained a rutile structure, though this structure was distorted by many stacking faults caused by the large oxygen deficiency. The electrical resistivity of the obtained TiO2−δ layer exhibited unconventional metallic behavior with hysteresis. A metal–insulator transition occurred at 42 K, and the electrical resistivity exceeded 104 Ω cm below 42 K. This metal–insulator transition could be caused by bipolaronic ordering derived from Ti–Ti pairings that formed along the stacking faults. The constant magnetization behavior observed below 42 K is consistent with the bipolaronic scenario that has been observed previously for Ti4O7. These peculiar electrical properties are strongly linked to the oxygen-deficient crystal structure, which contains many stacking faults formed by instantaneous heating during excimer laser irradiation.  相似文献   

6.
A detailed spectroscopic study of the optical characteristics of the tetrahedrally coordinated Cr4+ ion in LiAlO2 and LiGaO2 is given. From absorption and excitation measurements the crystal field parameter Dq and the Racah parameter B were determined to be Dq=1065 cm−1, B=450 cm−1, and Dq/B=2.4 for LiAlO2 and Dq=1055 cm−1, B=428 cm−1, and Dq/B=2.5 for LiGaO2. For the Racah parameter C only a lower limit can be given, i.e. 2417 cm−1 for LiAlO2 and 2667 cm−1 for LiGaO2. Due to the strong crystal field splitting — caused by the low site symmetry — the 3B(3T2) crystal field component is the metastable and thus the emitting level. In the low-temperature absorption and emission spectra the expected three spin–orbit components of the 3B level are found at 8273, 8296, and 8300 cm−1 for Cr4+:LiAlO2 and 8610, 8623, and 8632 cm−1 for Cr4+:LiGaO2. The emission lifetime of Cr4+ in LiAlO2 is 95 μs at 10 K and single exponential. In Mg-codoped LiAlO2 and in LiGaO2 the Cr4+ decay is double exponential. In Cr,Mg:LiAlO2 two centers can be clearly distinguished, while in Cr:LiGaO2 a variety of centers are observed, probably due to different charge compensation processes between Li, Ga, and Cr. The quantum efficiencies at room temperature are 42% for Cr:LiAlO2 and 23% for Cr:LiGaO2. Already at low temperature nonradiative decay processes occur. The temperature dependence of the lifetimes were analyzed with the model of Struck and Fonger. Excited state absorption measurements indicate that in the spectral region of the emission the excited state absorption cross-section is larger than the stimulated emission cross-section. Therefore laser oscillation is unlikely in these systems.  相似文献   

7.
The oxygen ions of the β-VOPO4 catalyst were exchanged with an tracer by a reduction–oxidation method and by a catalytic oxidation of but-1-ene using 2. The bands at 992 and 900 cm−1 were more shifted to lower frequencies than those at 1076 and 1002 cm−1. Applying the correlation between the Raman bands and stretching vibrations in the literature, the exchanged oxygen species were estimated. The results suggest that the P–O–V vacancies corresponding to 992 and 900 cm−1 were responsible for reoxidation and the V=O oxygen corresponding to the 1002 cm−1 band of β-VOPO4 was not. The (VO)2P2O7 was oxidized to β-VOPO4 by O2 above 823 K. The insertion position of oxygen was determined at the bands at 992 and 900 cm−1 of β-VOPO4 using 2, which is the same as the exchanged position.  相似文献   

8.
The complex [Ru(II)(dcbpyH2)(bdmpp)NCS](PF6) (1) (where dcbpyH2 is 2,2′-bipyridine-4,4′-dicarboxylic acid, bdmpp is 2,6-bis(3,5-dimethyl-N-pyrazoyl)pyridine,) is synthesized and characterized extensively by 1H NMR and 13C NMR 1D and 2D, mass spectroscopy, cyclic voltammetry, electronic absorption spectroscopy and IR. The half-wave potential of the Ru(II)/Ru(III) redox couple was measured at E1/2=+0.795 V versus Ag/AgCl in CH3CN. The complex presents three intense metal-to-ligand charge transfer (MLCT) (dM→πL*) absorption bands centered at 383 (=21 300 M−1 cm−1), 432 (=22 400 M−1 cm−1) and 475 nm (=23 400 M−1 cm−1), respectively. The absorbance is extremely strong between 400 and 500 nm and even at 620 nm, the extinction coefficient is still high (=3768 M−1 cm−1). The strong π-acceptor property of the trans-isothiocyanate ligand compared with the Cl ligand is probably the cause of the blue-shift observed in complex 1. These properties make the complex potentially promising for the photosensitization process. The incorporation of TiO2 photoelectrodes derivatized with this complex into a solar cell using a composite polymer/inorganic oxide solid-state electrolyte confirmed its sensitizing ability. Incident monochromatic photon-to-current conversion efficiency (IPCE) values of about 30% and overall energy conversion efficiency (η) of 1.7% were obtained.  相似文献   

9.
The hollow fiber composite membrane involving Zr0.84Y0.16O1.92 (YSZ) as an oxygen ionic conductor and La0.8Sr0.2MnO3−δ (LSM) as an electronic conductor was explored for oxygen separation application. The hollow fiber precursor was prepared by the phase-inversion process, and transformed to a gas-tight ceramic by sintering at 1350 °C. The as-prepared fiber exhibited a thermal expansion coefficient of 11.1 × 10−6 K−1 and a three-point bending strength of 152 ± 12 MPa. An oxygen permeation flux of 2.1 × 10−7 mol cm−2 s−1 was obtained under air/He gradient at 950 °C for a hollow fiber of length 57.00 mm and wall thickness 0.16 mm. The oxygen permeation flux remained unchanged when the sweeping gas was changed from helium to high concentration of CO2. Considering the satisfactory trade-off between the permeability and stability, the YSZ–LSM hollow fiber is promising for oxygen production applications.  相似文献   

10.
The grossly nonstoichiometric perovskites SrTiO3−x with x = 0.28, 0.17, and 0.08 were prepared from a reaction of Sr2TiO4, TiO, and TiO2 at 1500°C. For x = 0.28 relatively large single crystals were obtained. Also for this sample the crystal symmetry was found to depend on the rate of cooling from the reaction temperature and the annealing conditions. Rapidly cooled samples are tetragonal a = 3.9177(3) Å, c = 3.8878(5) Å. Samples annealed in vacuum at temperatures of 1000 to 600°C are cubic a = 3.9075(3) Å with no change in cell volume. Single crystal data from a tetragonal sample indicate slight preferential occupancy of one oxygen position in P4/mmm. No evidence for any supercell due to defect ordering could be seen by TEM in either cubic or tetragonal samples. The x = 0.28 crystals show metallic resistivity, (300 K) = 6 × 10−4 ohm-cm and temperature-independent paramagnetism, χm = 118 × 10−6 cm3 mole−1. Hall effect data from 300 to 4.2 K analyzed on a single carrier model give a temperature-independent n-type carrier density of 2.4 × 1021 cm−3. This is a factor of 3.9 less than that expected if the creation of each oxygen vacancy results in the production of two carriers in a single band. Hall data for x = 0.17 and 0.08 samples give similar results corresponding to densities of 2.1 and 1.4 × 1021 cm−3, respectively, in the same temperature range. These densities are 2.7 and 1.9 times less than the expected single-band value, respectively. Such results point to a two-band model with a large effective mass in one of the bands.  相似文献   

11.
EPR studies are carried out on Cr3+ ions doped in d-gluconic acid monohydrate (C6H12O7·H2O) single crystals at 77 K. From the observed EPR spectra, the spin Hamiltonian parameters g, |D| and |E| are measured to be 1.9919, 349 (×10−4) cm−1 and 113 (×10−4) cm−1, respectively. The optical absorption of the crystal is also studied at room temperature. From the observed band positions, the cubic crystal field splitting parameter Dq (2052 cm−1) and the Racah interelectronic repulsion parameter B (653 cm−1) are evaluated. From the correlation of EPR and optical data the nature of bonding of Cr3+ ion with its ligands is discussed.  相似文献   

12.
An electronic spectrum of the nickel monoboride radical has been observed for the first time, in a reaction between a nickel plasma and diborane. Numerous bands of 58Ni10B and 58Ni11B have been recorded between 442 and 503 nm in laser-induced fluorescence (LIF). Dispersed fluorescence experiments have also been performed. The LIF spectrum is dominated by a strong progression of bands of a [19.7]2Σ+X2Σ+ transition. Analyses have been carried out to yield the following 58Ni11B ground state parameters: r0 = 0.1698 nm, ωe = 778 cm−1, ωexe = 4.9 cm−1. Strong signals from NiH have also been observed.  相似文献   

13.
The magnetic and electric transport properties of La1−xBaxCoO3 (0<x≤0.50) have been studied systematically. Two effects of substitution divalent ions on the spin-state transition of Co3+ have been differentiated for the substitution of Ba2+ for La3+ in La1−xBaxCoO3. The first is the transition from low-spin state to high-spin state due to lattice expansion, and the second is the transition from low-spin state to intermediate-spin state caused by the strong hybridization between ligand (oxygen) 2p and Co 3d orbital with introduction of holes in the oxygen 2p orbital. Based on the two different spin-state transition mechanisms and experimental results, a phase separation model has been developed and a very detailed magnetic and electric phase diagram of La1−xBaxCoO3 has been constructed.  相似文献   

14.
In an excitation range of 620–760 nm, resonance Raman spectra of aluminum dimers (Al2) in an argon matrix have been obtained for the first time. Temperature annealing experiments were performed to remove Raman lines attributed site effects caused by the Al2/Ar matrix. We observe a single fundamental at 293.3 (5) cm−1 along with a progression up to 1149 (1) cm−1. Taking successive differences of band centers we obtain spectroscopic constants for the ground state fundamental, ωe=297.5 (5) cm−1, the anharmonicity, ωexe=1.68 (8) cm−1. Our results are in close agreement with previous experimental results for Al2 which designate the ground state as a 3Πu state, and may be considered as confirmation of this assignment.  相似文献   

15.
The coupled-cluster singles-doubles-approximate-triples [CCSD(T)] theory in combination with the correlation-consistent quintuple basis set (aug-cc-pV5Z) is used to investigate the spectroscopic properties of the CH(X2Π) radical. The accurate adiabatic potential energy curve is calculated over the internuclear separation ranging from 0.07 to 2.45 nm and is fitted to the analytic Murrell–Sorbie function, which is employed to determine the spectroscopic parameters, ωeχe, αe and Be. The present De, Re, ωe, ωeχe, αe and Be values are of 3.6261 eV, 0.11199 nm, 2856.312 cm−1, 64.9321 cm−1, 0.5452 cm−1 and 14.457 cm−1, respectively. Excellent agreement is obtained when they are compared with the available measurements. With the potential obtained at the CCSD(T)/aug-cc-pV5Z level of theory, a total of 18 vibrational states is predicted when J = 0 by numerically solving the radial Schrödinger equation of nuclear motion. The complete vibrational levels, classical turning points, inertial rotation and centrifugal distortion constants are reproduced for the CH(X2Π) radical when J = 0 for the first time, which are in good agreement with the available RKR data.  相似文献   

16.
The photochemical, photophysical and photobiological studies of a mixture containing cis-[Ru(H-dcbpy)2(Cl)(NO)] (H2-dcbpy = 4,4′-dicarboxy-2,2′-bipyridine) and Na4[Tb(TsPc)(acac)] (TsPc = tetrasulfonated phthalocyanines; acac = acetylacetone), a system capable of improving photodynamic therapy (PDT), were accomplished. cis-[Ru(H-dcbpy)2(Cl)(NO)] was obtained from cis-[Ru(H2-dcbpy)2Cl2]·2H2O, whereas Na4[Tb(TsPc)(acac)] was obtained by reacting phthalocyanine with terbium acetylacetonate. The UV–Vis spectrum of cis-[Ru(H-dcbpy)2(Cl)(NO)] displays a band in the region of 305 nm (λmax in 0.1 mol L−1 HCl)(π–π*) and a shoulder at 323 nm (MLCT), while the UV–Vis spectrum of Na4[Tb(TsPc)(acac)] presents the typical phthalocyanine bands at 342 nm (Soret λmax in H2O) and 642, 682 (Q bands). The cis-[Ru(H-dcbpy)2(Cl)(NO)] FTIR spectrum displays a band at 1932 cm−1 (Ru–NO+). The cyclic voltammogram of the cis-[Ru(H-dcbpy)2(Cl)(NO)] complex in aqueous solution presented peaks at E = 0.10 V (NO+/0) and E = −0.50 V (NO0/−) versus Ag/AgCl. The NO concentration and 1O2 quantum yield for light irradiation in the λ > 550 nm region were measured as [NO] = 1.21 ± 0.14 μmol L−1 and øOS = 0.41, respectively. The amount of released NO seems to be dependent on oxygen concentration, once the NO concentration measured in aerated condition was 1.51 ± 0.11 μmol L−1 The photochemical pathway of the cis-[Ru(H-dcbpy)2(Cl)(NO)]/Na4[Tb(TsPc)(acac)] mixture could be attributed to a photoinduced electron transfer process. The cytotoxic assays of cis-[Ru(H-dcbpy-)2(Cl)(NO)] and of the mixture carried out with B16F10 cells show a decrease in cell viability to 80% in the dark and to 20% under light irradiation. Our results document that the simultaneous production of NO and 1O2 could improve PDT and be useful in cancer treatment.  相似文献   

17.
The kinetics of the reaction of the CH3CHBr, CHBr2 or CDBr2 radicals, R, with HBr have been investigated in a temperature-controlled tubular reactor coupled to a photoionization mass spectrometer. The CH3CHBr (or CHBr2 or CDBr2) radical was produced homogeneously in the reactor by a pulsed 248 nm exciplex laser photolysis of CH3CHBr2 (or CHBr3 or CDBr3). The decay of R was monitored as a function of HBr concentration under pseudo-first-order conditions to determine the rate constants as a function of temperature. The reactions were studied separately from 253 to 344 K (CH3CHBr + HBr) and from 288 to 477 K (CHBr2 + HBr) and in these temperature ranges the rate constants determined were fitted to an Arrhenius expression (error limits stated are 1σ + Student’s t values, units in cm3 molecule−1 s−1, no error limits for the third reaction): k(CH3CHBr + HBr) = (1.7 ± 1.2) × 10−13 exp[+ (5.1 ± 1.9) kJ mol−1/RT], k(CHBr2 + HBr) = (2.5 ± 1.2) × 10−13 exp[−(4.04 ± 1.14) kJ mol−1/RT] and k(CDBr2 + HBr) = 1.6 × 10−13 exp(−2.1 kJ mol−1/RT). The energy barriers of the reverse reactions were taken from the literature. The enthalpy of formation values of the CH3CHBr and CHBr2 radicals and an experimental entropy value at 298 K for the CH3CHBr radical were obtained using a second-law method. The result for the entropy value for the CH3CHBr radical is 305 ± 9 J K−1 mol−1. The results for the enthalpy of formation values at 298 K are (in kJ mol−1): 133.4 ± 3.4 (CH3CHBr) and 199.1 ± 2.7 (CHBr2), and for α-C–H bond dissociation energies of analogous compounds are (in kJ mol−1): 415.0 ± 2.7 (CH3CH2Br) and 412.6 ± 2.7 (CH2Br2), respectively.  相似文献   

18.
The basic copper arsenate mineral strashimirite Cu8(AsO4)4(OH)4·5H2O from two different localities has been studied by Raman spectroscopy and complemented by infrared spectroscopy. Two strashimirite mineral samples were obtained from the Czech (sample A) and Slovak (sample B) Republics. Two Raman bands for sample A are identified at 839 and 856 cm−1 and for sample B at 843 and 891 cm−1 are assigned to the ν1 (AsO43−) symmetric and the ν3 (AsO43−) antisymmetric stretching modes, respectively. The broad band for sample A centred upon 500 cm−1, resolved into component bands at 467, 497, 526 and 554 cm−1 and for sample B at 507 and 560 cm−1 include bands which are attributable to the ν4 (AsO43−) bending mode. In the Raman spectra, two bands (sample A) at 337 and 393 cm−1 and at 343 and 374 cm−1 for sample B are attributed to the ν2 (AsO43−) bending mode. The Raman spectrum of strashimirite sample A shows three resolved bands at 3450, 3488 and 3585 cm−1. The first two bands are attributed to water stretching vibrations whereas the band at 3585 cm−1 to OH stretching vibrations of the hydroxyl units. Two bands (3497 and 3444 cm−1) are observed in the Raman spectrum of B. A comparison is made of the Raman spectrum of strashimirite with the Raman spectra of other selected basic copper arsenates including olivenite, cornwallite, cornubite and clinoclase.  相似文献   

19.
Infrared spectra of CO-treated platinum hydrosols subsequently treated with acetylene, hydrogen, and oxygen reveal that v(CO)ads decreases from 2070 cm−1 with increasing gas-treatment time. This has been attributed to a reduction in the coverage of adsorbed CO. In Pt sol/CO/C2H2 systems, v(CO)ads decreases to a limiting value of ca. 2060 cm−1 after exposure to acetylene. In the Pt sol/CO/H2 systems, v(CO)ads decreases to ca. 2050 cm−1 after exposure to hydrogen gas. The lower frequency in the Pt sol/CO/H2 system has been attributed to CO adsorption on more active metal sites formed from the reduction of surface platinum oxides. Exposure of the CO-treated platinum hydrosols to O2 gas was found to cause the eventual disappearance of the v(CO)ads band in infrared spectra, which was attributed to oxidation of adsorbed CO to CO2 by weakly bound surface layers of platinum oxides formed by the oxygen treatment.  相似文献   

20.
The crystal structure of Y2SrFeCuO6.5 was determined from single-crystal X-ray and neutron powder diffraction studies. Mr = 488.81, orthorhombic, Ibam, a = 5.4036(8)[5.4149(1)] Å, b = 10.702(1)[10.7244(1)] Å, c = 20.250(2)[20.2799(2)] Å; values in square brackets are neutron data. V = 1171.0(4), Z = 8, Dx = 5.544 g cm−3, λ = 0.71069 Å, μ = 345.1 cm−1, R = 0.048 for 567 observed reflections. The Fe/Cu atoms occupy randomly the approximate center of oxygen pyramids. The pyramids share the apical oxygen and articulate laterally by corner sharing of oxygen to form a double pyramidal layer perpendicular to c. The pyramidal slabs are separated by double layers of Y that are in 7-fold coordination to oxygen, forming a defect fluorite unit. Mössbauer spectra indicate a unique iron environment and magnetic ordering at about 265 K. The paramagnetic phase coexists with the magnetic phase over an approximate temperature range 300-263 K, characteristic of magnetic ordering in 2-D magnetic structures. The isomer shift, 0.26, and quadrupole splitting, 0.56 mm sec−1, are consistent with Fe3+ in 5-fold coordination and Hint values also indicate classic high spin Fe3+. The average Y---O bond length is 2.331(6) Å and Sr is in a dodecahedral environment in which, however, two oxygen atoms at the corners of the cube are missing. The average Sr---O bond length is 2.793(10) Å. The structure is derived from the Ruddlesden-Popper phase Srn+1TinO3n+1 with n = 2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号