首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
In this paper we study the homogenization of degenerate quasilinear parabolic equations: where a(t, y, a, λ) is periodic in (t, y).  相似文献   

2.
In this paper, some approximation formulae for a class of convolution type double singular integral operators depending on three parameters of the type(T_λf)(x, y) = ∫_a~b ∫_a~b f(t, s)K_λ(t-x,s-y)dsdt, x,y ∈(a,b), λ∈Λ  [0,∞),(0.1)are given. Here f belongs to the function space L_1( a,b ~2), where a,b is an arbitrary interval in R. In this paper three theorems are proved, one for existence of the operator(T_λf)(x, y) and the others for its Fatou-type pointwise convergence to f(x_0, y_0), as(x,y,λ) tends to(x_0, y_0, λ_0). In contrast to previous works, the kernel functions K_λ(u,v)don't have to be 2π-periodic, positive, even and radial. Our results improve and extend some of the previous results of [1, 6, 8, 10, 11, 13] in three dimensional frame and especially the very recent paper [15].  相似文献   

3.
In this paper,the parameterized Marcinkiewicz integrals with variable kernels defined by μΩ^ρ(f)(x)=(∫0^∞│∫│1-y│≤t Ω(x,x-y)/│x-y│^n-p f(y)dy│^2dt/t1+2p)^1/2 are investigated.It is proved that if Ω∈ L∞(R^n) × L^r(S^n-1)(r〉(n-n1p'/n) is an odd function in the second variable y,then the operator μΩ^ρ is bounded from L^p(R^n) to L^p(R^n) for 1 〈 p ≤ max{(n+1)/2,2}.It is also proved that,if Ω satisfies the L^1-Dini condition,then μΩ^ρ is of type(p,p) for 1 〈 p ≤ 2,of the weak type(1,1) and bounded from H1 to L1.  相似文献   

4.
The paper deals with estimates of the covering number for some Mercer kernel Hilbert space with Bernstein-Durrmeyer operators. We first give estimates of l2-norm of Mercer kernel matrices reproducing by the kernels K(α,β)(x,y):=∞∑k=0 C(α,β)k Qk(α,β)(x)Qk(α,β)(y),where Qα,βk(x) are the Jacobi polynomials of order k on (0, 1), Cα,βk > 0 are real numbers,and from which give the lower and upper bounds of the covering number for some particular reproducing kernel Hilbert space reproduced by K(α,β)(x,y).  相似文献   

5.
In this paper, the authors consider the existence of periodic solutions for a kind of second neutral functional differential equation as follows:(x(t) - cx(t -τ)" = g(t, x(t - μ(t))) + e(t),in the critical case |c| = 1. By employing Mawhin's continuation theorem and some analysis techniques, some new results are obtained.  相似文献   

6.
We study the rough bilinear fractional integral
$ \tilde B_{\Omega ,\alpha } (f,g)(x) = \int_{\mathbb{R}^n } {f(x + y)g(x - y)\frac{{\Omega (x,y')}} {{\left| y \right|^{n - \alpha } }}dy} , $ \tilde B_{\Omega ,\alpha } (f,g)(x) = \int_{\mathbb{R}^n } {f(x + y)g(x - y)\frac{{\Omega (x,y')}} {{\left| y \right|^{n - \alpha } }}dy} ,   相似文献   

7.
The hyper Hilbert transform Tnf(x) =∫-1^1 f(x - Γ(t))e^-i|t|-β|t|^-1-αdt along an appropriate curve Γ(t) on R^n is investigated,where β 〉 α 〉 0.An L^p boundedness theorem of T4 is obtained,which is an extension of some earlier results of n = 2 and n = 3.  相似文献   

8.
In this paper we obtain the strong asymptotics for the sequence of orthogonal polynomials with respect to the inner product $\left\langle {f,g} \right\rangle s = \sum\limits_{k - 0}^m {\int\limits_{\Delta _k } {f^{\left( k \right)} \left( x \right)g^{\left( k \right)} \left( x \right)d\mu \kappa } } \left( x \right)$ where $\left\{ {\mu _\kappa } \right\}_{k = 0}^m ,m \in \mathbb{Z}_ + $ , are measures supported on [?1,1] which satisfy Szegö's condition.  相似文献   

9.
In this paper we use basic properties of strongly convex functions to obtain new inequalities including Jensen type and Jensen–Mercer type inequalities. Applications for special means are pointed out as well. We also give a Jensen’s operator inequality for strongly convex functions. As a corollary, we improve the Hölder-McCarthy inequality under suitable conditions. More precisely we show that if \(Sp\left( A \right) \subset \left( 1,\infty \right) \), then
$$\begin{aligned} {{\left\langle Ax,x \right\rangle }^{r}}\le \left\langle {{A}^{r}}x,x \right\rangle -\frac{{{r}^{2}}-r}{2}\left( \left\langle {{A}^{2}}x,x \right\rangle -{{\left\langle Ax,x \right\rangle }^{2}} \right) ,\quad r\ge 2 \end{aligned}$$
and if \(Sp\left( A \right) \subset \left( 0,1 \right) \), then
$$\begin{aligned} \left\langle {{A}^{r}}x,x \right\rangle \le {{\left\langle Ax,x \right\rangle }^{r}}+\frac{r-{{r}^{2}}}{2}\left( {{\left\langle Ax,x \right\rangle }^{2}}-\left\langle {{A}^{2}}x,x \right\rangle \right) ,\quad 0<r<1 \end{aligned}$$
for each positive operator A and \(x\in \mathcal {H}\) with \(\left\| x \right\| =1\).
  相似文献   

10.
In this paper, the auther investigates optimal control problems of continuotis time linear system with hybrid quadratic criteria such as $\[J(u) = \sum\limits_{i = 1}^N {\left\langle {{Q_i}x({t_i}),x({t_i})} \right\rangle } + \int_0^t {\left\langle {Ru(t),u(t)} \right\rangle } dt\]$. Closed-loop results are obtained in which the optiinal control can be expressed by means of state values measured only at these discrete-time points. Formulae are given for determination of feedback operators.  相似文献   

11.
Stochastic homogenization (with multiple fine scales) is studied for a class of nonlinear monotone eigenvalue problems. More specifically, we are interested in the asymptotic behaviour of a sequence of realizations of the form
$ - div\left( {a\left( {T_1 \left( {\frac{x} {{\varepsilon _1 }}} \right)\omega _1 ,T_2 \left( {\frac{x} {{\varepsilon _2 }}} \right)\omega _2 ,\nabla u_\varepsilon ^\omega } \right)} \right) = \lambda _\varepsilon ^\omega \mathcal{C}\left( {u_\varepsilon ^\omega } \right) $ - div\left( {a\left( {T_1 \left( {\frac{x} {{\varepsilon _1 }}} \right)\omega _1 ,T_2 \left( {\frac{x} {{\varepsilon _2 }}} \right)\omega _2 ,\nabla u_\varepsilon ^\omega } \right)} \right) = \lambda _\varepsilon ^\omega \mathcal{C}\left( {u_\varepsilon ^\omega } \right)   相似文献   

12.
Let {Xni} be an array of rowwise negatively associated random variables and Tnk=k∑i=1 i^a Xni for a ≥ -1, Snk =∑|i|≤k Ф(i/nη)1/nη Xni for η∈(0,1],where Ф is some function. The author studies necessary and sufficient conditions of ∞∑n=1 AnP(max 1≤k≤n|Tnk|〉εBn)〈∞ and ∞∑n=1 CnP(max 0≤k≤mn|Snk|〉εDn)〈∞ for all ε 〉 0, where An, Bn, Cn and Dn are some positive constants, mn ∈ N with mn /nη →∞. The results of Lanzinger and Stadtmfiller in 2003 are extended from the i.i.d, case to the case of the negatively associated, not necessarily identically distributed random variables. Also, the result of Pruss in 2003 on independent variables reduces to a special case of the present paper; furthermore, the necessity part of his result is complemented.  相似文献   

13.
In this paper, we show that an n-dimensional connected non-compact Ricci soliton isometrically immersed in the flat complex space form ${(C^{\frac{n+1}{2}},J,\left\langle ,\right\rangle )}$ , with potential vector field of the Ricci soliton is the characteristic vector field of the real hypersurface is an Einstein manifold. We classify connected Hopf hypersurfaces in the flat complex space form ${(C^{\frac{n+1}{2}},J,\left\langle ,\right\rangle )}$ and also obtain a characterization for the Hopf hypersurfaces in ${(C^{\frac{n+1}{2}},J,\left\langle ,\right\rangle ) }$ .  相似文献   

14.
The Berezin symbol à of an operator A acting on the reproducing kernel Hilbert space H = H(Ω) over some (nonempty) set is defined by \(\tilde A(\lambda ) = \left\langle {A\hat k_\lambda ,\hat k_\lambda } \right\rangle \), λ ∈ Ω, where \(\hat k_\lambda = k_\lambda /\left\| {k_\lambda } \right\|\) is the normalized reproducing kernel of H. The Berezin number of the operator A is defined by \(ber(A) = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\tilde A(\lambda )} \right| = \mathop {\sup }\limits_{\lambda \in \Omega } \left| {\left\langle {A\hat k_\lambda ,\hat k_\lambda } \right\rangle } \right|\). Moreover, ber(A) ? w(A) (numerical radius). We present some Berezin number inequalities. Among other inequalities, it is shown that if \(T = \left[ {\begin{array}{*{20}c} A & B \\ C & D \\ \end{array} } \right] \in \mathbb{B}(\mathcal{H}(\Omega _1 ) \oplus \mathcal{H}(\Omega _2 ))\), then
$$ber(T) \leqslant \frac{1}{2}(ber(A) + ber(D)) + \frac{1}{2}\sqrt {(ber(A) - ber(D))^2 + \left( {\left\| B \right\| + \left\| C \right\|} \right)^2 } .$$
  相似文献   

15.
16.
Summary The integrals and , where n is any positive integer, are evaluated in terms ofMacRobert E-functions and generalized hypergeometric functions.  相似文献   

17.
In this paper we consider the bifurcation problem -div A(x, u)=λa(x)|u|^p-2u+f(x,u,λ) in Ω with p 〉 1.Under some proper assumptions on A(x,ξ),a(x) and f(x,u,λ),we show that the existence of an unbounded branch of positive solutions bifurcating Irom the principal eigenvalue of the problem --div A(x, u)=λa(x)|u|^p-2u.  相似文献   

18.
The present paper is devoted to the finding conditions of nontrivial (non-zero) solvability of some classes of equations of the form \(S\left( x \right) = \int_0^\infty {{T_1}\left( {x - t} \right)S\left( t \right)} dt + \int_{ - \infty }^0 {{T_2}\left( {x - t} \right)S\left( t \right)} dt\), xR, with respect to unknown function S. The asymptotic behavior of the solution S is also studied.  相似文献   

19.
LetP be a conservative and ergodic Markov operator onL 1(X, Σ,m). We give a sufficient condition for the existence of a decompositionA f X such that for 0≦f, gL (A j ) and any two probability measuresμ andν weaker thanm , whereλ is theσ-finite invariant measure (which necessarily exists). Processes recurrent in the sense of Harris are shown to have this decomposition, and an analytic proof of the convergence of is deduced for such processes. This paper is a part of the author’s Ph.D. thesis prepared at the Hebrew University of Jerusalem under the direction of Professor S. R. Foguel, to whom the author is grateful for his helpful advice and kind encouragement.  相似文献   

20.
Let f and g be distributions and let gn = (g * δn)(x), where δn (x) is a certain converging to the Dirac delta function. The non-commutative neutrix product fog of f and g to be the limit of the sequence {fgn }, provided its limit h exists in the sense that sequence is defined N-lim n-∞(f(x)g,, (x), φ(x)〉 = (h(x), φ(x)},for all functions p in 2. It is proved that (x^λ+1n^px+)0(x^μ+1n^qx+)=x+^λμ1n^p+qx+,(x^λ-1n^qx-)=x-^λ+μ1n^p+qx-,for λ+μ〈-1; λ,μ, λ+μ≠-1,-2…and p,q=0,1,2……  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号