首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microcrystalline naphthalene extraction has been used for the preconcentration of p-benzoquinone and tetrachloro-p-benzoquinone (chloranil), after their reaction by aniline, and later simultaneous spectrophotometric analysis by genetic algorithm-partial least squares (GA-PLS) calibration. The chemical variables affecting the analytical performance of the methodology were studied and optimized. Under the optimum conditions i.e., [aniline] = 0.05 M and [naphthalene] = 2.2% (w/v), preconcentration of 25 ml of sample solution permitted the detection of 0.32 and 0.23 microg ml(-1) for p-benzoquinone and chloranil, respectively. The predictive abilities of partial least squares regression (PLS) and genetic algorithm-partial least squares regression (GA-PLS) were examined for simultaneous determination of two quinones. The GA-PLS shows superiority over other PLS methods due to the wavelength selection in PLS calibration using a genetic algorithm without loss of prediction capacity, provides useful information about the chemical system.  相似文献   

2.
3.
Simultaneous multicomponent analysis is usually carried out by multivariate calibration models such as partial least squares (PLS) that utilize the full spectrum. It has been demonstrated by both experimental and theoretical considerations that better results can be obtained by a proper selection of the spectral range to be included in calculations. A genetic algorithm is one of the most popular methods for selecting variables for PLS calibration of mixtures with almost identical spectra without loss of prediction capacity. In this work, a simple and precise method for rapid and accurate simultaneous determination of sulfide and sulfite ions based on the addition reaction of these ions with new fuchsin at pH 8 and 25°C by PLS regression and using a genetic algorithm (GA) for variable selection is proposed. The concentrations of sulfide and sulfite ions varied between 0.05–2.50 and 0.15–2.00 μg/mL, respectively. A series of synthetic solutions containing different concentrations of sulfide and sulfite were used to check the prediction ability of GA-PLS models. The root mean square error of prediction with PLS on the whole data set was 0.19 μg/mL for sulfide and 0.09 μg/mL for sulfite. After the application of GA, these values were reduced to 0.04 and 0.03 μg/mL, respectively. The text was submitted by the authors in English.  相似文献   

4.
《Analytical letters》2012,45(4):687-700
In this study, simultaneous spectrophotometry determination of guaifenesin and theophylline in pharmaceuticals by chemometric approaches has been reported. Spectra of mixtures of these drugs were recorded and corresponding first derivatives were calculated. Partial least squares regression (PLS) alone and ant colony optimization (ACO) coupled with PLS were used in analysis of the data. Ant colony system (ACS) as an efficient ACO algorithm was used. In addition, ACS was combined to genetic algorithm (GA) to produce better results. The analytical performances of these chemometric methods were characterized by relative prediction errors. These methods were successfully applied to pharmaceutical formulation.  相似文献   

5.
6.
A ratio-spectra zero-crossing first-derivative spectrophotometric method and 2 chemometric methods have been used for the simultaneous determination of ternary mixtures of caffeine (A), 8-chlorotheophylline (B), and chlorphenoxamine hydrochloride (C) in bulk powder and dosage forms. In the ratio-spectra zero-crossing first-derivative spectrophotometric technique (1DD), calibration curves were linear in the range of 4-20 microg/mL for A, B, and C (r = 0.9992, 0.9994, and 0.9976, respectively). The measurements were carried out at 212, 209.2, and 231.4 nm for A, B, and C, respectively. The detection limits for A, B, and C were calculated to be 0.24, 0.34, and 0.13 microg/mL, and the percentage recoveries were 99.1 +/- 0.89, 100.1 +/- 0.95, and 100.1 +/- 1.0, respectively. Two chemometric methods, namely, the partial least-squares (PLS) model and the principal component regression (PCR) model, were also used for the simultaneous determination of the 3 drugs in the ternary mixture. A training set consisting of 15 mixtures containing different ratios of A, B, and C was used. The concentration used for the construction of the PLS and PCR models varied between 4 and 25 microg/mL for each drug. These models were used after their validation for the prediction of the concentrations of A, B, and C in mixtures. The detection limits for A, B, and C were calculated to be 0.13, 0.15, and 0.14 microg/mL, respectively, and the percent recoveries were found to be 99.8 micro 0.96, 99.9 micro 0.94, and 99.9 micro 1.18, respectively, for both methods. The 3 proposed procedures are rapid, simple, sensitive, and accurate. No preliminary separation steps or resolution equations are required; thus, they can be applied to the simultaneous determination of the 3 drugs in commercial tablets and suppositories or in quality-control laboratories.  相似文献   

7.
Simultaneous multicomponent analysis is usually carried out using multivariate calibration models, such as the partial least squares (PLS) one, that utilize the full spectrum. It has been shown by both experimental and theoretical considerations that better results can by obtained by proper selection of the spectral range to be included in calculations. A genetic algorithm (GA) is one of the most popular methods for selecting variables for PLS calibration of mixtures with almost identical spectra without loss of predictive capability. In this work, a simple and precise method for rapid and accurate simultaneous determination of sulfide and sulfite ions based on the addition reaction of these ions with new fuchsin at pH 8 and 25°C using PLS regression and GA for variable selection is proposed. The concentrations of sulfide ions varied between 0.05–2.50 and 0.15–2.00 μg/mL, respectively. A series of model solutions containing different concentrations of sulfide and sulfite were used to check the predictive ability of GA-PLS models. The root mean square error of prediction with PLS on the whole data set was 0.19 μg/mL for sulfide and 0.09 μg/mL for sulfite. After the application of GA, these values reduced to 0.04 and 0.03 μg/mL, respectively. The text was submitted by the authors in English.  相似文献   

8.
A method for sulfur determination in diesel fuel employing near infrared spectroscopy, variable selection and multivariate calibration is described. The performances of principal component regression (PCR) and partial least square (PLS) chemometric methods were compared with those shown by multiple linear regression (MLR), performed after variable selection based on the genetic algorithm (GA) or the successive projection algorithm (SPA). Ninety seven diesel samples were divided into three sets (41 for calibration, 30 for internal validation and 26 for external validation), each of them covering the full range of sulfur concentrations (from 0.07 to 0.33% w/w). Transflectance measurements were performed from 850 to 1800 nm. Although principal component analysis identified the presence of three groups, PLS, PCR and MLR provided models whose predicting capabilities were independent of the diesel type. Calibration with PLS and PCR employing all the 454 wavelengths provided root mean square errors of prediction (RMSEP) of 0.036% and 0.043% for the validation set, respectively. The use of GA and SPA for variable selection provided calibration models based on 19 and 9 wavelengths, with a RMSEP of 0.031% (PLS-GA), 0.022% (MLR-SPA) and 0.034% (MLR-GA). As the ASTM 4294 method allows a reproducibility of 0.05%, it can be concluded that a method based on NIR spectroscopy and multivariate calibration can be employed for the determination of sulfur in diesel fuels. Furthermore, the selection of variables can provide more robust calibration models and SPA provided more parsimonious models than GA.  相似文献   

9.
In this work, different approaches for variable selection are studied in the context of near-infrared (NIR) multivariate calibration of textile. First, a model-based regression method is proposed. It consists in genetic algorithm optimisation combined with partial least squares regression (GA-PLS). The second approach is a relevance measure of spectral variables based on mutual information (MI), which can be performed independently of any given regression model. As MI makes no assumption on the relationship between X and Y, non-linear methods such as feed-forward artificial neural network (ANN) are thus encouraged for modelling in a prediction context (MI-ANN). GA-PLS and MI-ANN models are developed for NIR quantitative prediction of cotton content in cotton-viscose textile samples. The results are compared to full-spectrum (480 variables) PLS model (FS-PLS). The model requires 11 latent variables and yielded a 3.74% RMS prediction error in the range 0-100%. GA-PLS provides more robust model based on 120 variables and slightly enhanced prediction performance (3.44% RMS error). Considering MI variable selection procedure, great improvement can be obtained as 12 variables only are retained. On the basis of these variables, a 12 inputs ANN model is trained and the corresponding prediction error is 3.43% RMS error.  相似文献   

10.
A simple and environment friendly method was developed for determination of Malathion content of analytical and commercial insecticide samples with no special preparation. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra were characterized and 1000-2000 cm−1 region was selected for quantitative analysis utilizing partial least square (PLS) and two wavelength selection methods: (a) principal component regression (PCR) and (b) genetic algorithm (GA). Relative error of prediction (REP) was calculated in PLS, PCR-PLS and GA-PLS methods and was 3.536, 1.656 and 0.188, respectively. Proposed method is successfully applicable for quantification of Malathion in commercial grade samples and reliable results in comparison with known methods, confirms this idea.  相似文献   

11.
Evolutionary factor analysis (EFA) and rank annihilation factor analysis (RAFA) were applied to resolve the two-way equilibrium spectrophotometric data belonging to the complexes of Fe(III), Al(III) and V(V) with morin (3,5,7,20,40-penta hydroxy flavone) as chelating agent in triton X-100 micellar media. Then, partial least square regression combined with genetic algorithm for wavelength selection (GA-PLS) was used for simultaneous determination of the metal ions. The parameters controlling behavior of the system were investigated and optimum conditions were selected. The predictive abilities of partial least squares regression (PLS) and genetic algorithm-partial least squares regression (GA-PLS) were examined in simultaneous determination of ternary mixtures of metal ions over the concentration range of 17.0-170.0ngml(-1), 25.0-180.0ngml(-1) and 40.0-325.0ngml(-1) for Fe(III), Al(III) and V(V), respectively. The relative standard errors for prediction of the ions in synthetic mixtures were lower than 5% and the mean recoveries in the tap water spiked samples were 104.2 and 101.7% for PLS and GA-PLS, respectively.  相似文献   

12.
This paper presents a new application of three-way parallel factor analysis (3W-PARAFAC) model to the coeluting spectrochromatograms for the quantitative resolution of a quaternary mixture system consisting of paracetamol, propyphenazone, and caffeine with aspirin as an internal standard. Spectrochromatograms of calibration standards, validation sets, and unknown samples were recorded as a function of retention time and wavelength in the range of 0.0–2.5?min and 200–400?nm, respectively, using ultra-performance liquid chromatography with photodiode array detection (UPLC-PDA). Three-way UPLC-PDA data array X (retention time?×?wavelength?×?sample) was obtained from the data matrices of the spectrochromatograms. 3W-PARAFAC decomposition of three-way UPLC-PDA data array provided three loading matrices corresponding to chromatographic mode, spectral mode, and relative concentration mode. Quantitative estimation of paracetamol, propyphenazone, and caffeine in analyzed samples was accomplished using the relative concentration mode obtained by the deconvolution of the UPLC-PDA data set. The validity and ability of 3W-PARAFAC model were checked by analyzing independent test samples. It was observed from analyses that 3W-PARAFAC method has potential to uniquely resolve strongly overlapping peaks of analyzed compounds in a spectrochromatogram, which was obtained under experimental conditions consisting of the lower flow rate, short run time, and simple mobile phase composition. The proposed three-way chemometric approach was successfully applied to the simultaneous quantification of paracetamol, propyphenazone, and caffeine in tablets. Experiments showed that the determination results were in good agreement with label amount in commercial pharmaceutical preparation.  相似文献   

13.
The UV spectrophotometric analysis of a multicomponent mixture containing paracetamol, caffeine, tripelenamine and salicylamide by using multivariate calibration methods, such as principal component regression (PCR) and partial least-squares regression (PLS), was described. The calibration set was based on 47 reference samples, consisting of quaternary, ternary, binary and single-component mixtures, with the aim to develop models able to predict the concentrations of unknown samples containing as many as one-to-four components. The calibration models were optimized by an appropriate selection of the number of factors as well as wavelength ranges to be used for building up the data matrix and excluding any information about the interfering excipients included in pharmaceutics. The PCR and PLS models were compared and their predictive performance was inferred by a successful application to the assays of synthetic mixtures and pharmaceutical formulations.  相似文献   

14.
Optimized sample-weighted partial least squares   总被引:2,自引:0,他引:2  
Lu Xu 《Talanta》2007,71(2):561-566
In ordinary multivariate calibration methods, when the calibration set is determined to build the model describing the relationship between the dependent variables and the predictor variables, each sample in the calibration set makes the same contribution to the model, where the difference of representativeness between the samples is ignored. In this paper, by introducing the concept of weighted sampling into partial least squares (PLS), a new multivariate regression method, optimized sample-weighted PLS (OSWPLS) is proposed. OSWPLS differs from PLS in that it builds a new calibration set, where each sample in the original calibration set is weighted differently to account for its representativeness to improve the prediction ability of the algorithm. A recently suggested global optimization algorithm, particle swarm optimization (PSO) algorithm is used to search for the best sample weights to optimize the calibration of the original training set and the prediction of an independent validation set. The proposed method is applied to two real data sets and compared with the results of PLS, the most significant improvement is obtained for the meat data, where the root mean squared error of prediction (RMSEP) is reduced from 3.03 to 2.35. For the fuel data, OSWPLS can also perform slightly better or no worse than PLS for the prediction of the four analytes. The stability and efficiency of OSWPLS is also studied, the results demonstrate that the proposed method can obtain desirable results within moderate PSO cycles.  相似文献   

15.
This paper reports the results of a rapid method to determine sucrose in chocolate mass using near infrared spectroscopy (NIRS). We applied a broad-based calibration approach, which consists in putting together in one single calibration samples of various types of chocolate mass. This approach increases the concentration range for one or more compositional parameters, improves the model performance and requires just one calibration model for several recipes. The data were modelled using partial least squares (PLS) and multiple linear regression (MLR). The MLR models were developed using a variable selection based on the coefficient regression of PLS and genetic algorithm (GA). High correlation coefficients (0.998, 0.997, 0.998 for PLS, MLR and GA-MLR, respectively) and low prediction errors confirms the good predictability of the models. The results show that NIR can be used as rapid method to determine sucrose in chocolate mass in chocolate factories.  相似文献   

16.
An experiment was developed as a simple alternative to existing analytical methods for the simultaneous quantitation of glucose (substrate) and glucuronic acid (main product) in the bioprocesses Kombucha by using FTIR spectroscopy coupled to multivariate calibration (partial least-squares, PLS-1 and artificial neural networks, ANNs). Wavelength selection through a novel ranked regions genetic algorithm (RRGA) was used to enhance the predictive ability of the chemometric models. Acceptable results were obtained by using the ANNs models considering the complexity of the sample and the speediness and simplicity of the method. The accuracy on the glucuronic acid determination was calculated by analysing spiked real fermentation samples (recoveries ca. 115%).  相似文献   

17.
A new variable selection algorithm is described, based on ant colony optimization (ACO). The algorithm aim is to choose, from a large number of available spectral wavelengths, those relevant to the estimation of analyte concentrations or sample properties when spectroscopic analysis is combined with multivariate calibration techniques such as partial least-squares (PLS) regression. The new algorithm employs the concept of cooperative pheromone accumulation, which is typical of ACO selection methods, and optimizes PLS models using a pre-defined number of variables, employing a Monte Carlo approach to discard irrelevant sensors. The performance has been tested on a simulated system, where it shows a significant superiority over other commonly employed selection methods, such as genetic algorithms. Several near infrared spectroscopic experimental data sets have been subjected to the present ACO algorithm, with PLS leading to improved analytical figures of merit upon wavelength selection. The method could be helpful in other chemometric activities such as classification or quantitative structure-activity relationship (QSAR) problems.  相似文献   

18.
Ghasemi J  Niazi A  Leardi R 《Talanta》2003,59(2):311-317
Genetic algorithm (GA) is a suitable method for selecting wavelengths for PLS (partial least squares) calibration of mixtures with almost identical spectra without loss of prediction capacity using spectrophotometric method. The method is based on the development of the reaction between the analytes and Zincon at pH 9. A series of synthetic solution containing different concentrations of copper and zinc were used to check the prediction ability of the GA-PLS models. The RMSD for copper and zinc with GA and without GA were 0.0407 and 0.0865, 0.2147 and 0.3005, respectively. Calibration matrices were 0.05-1.8 and 0.05-1.5 μg ml−1 for copper and zinc, respectively. This procedure allows the simultaneous determination of cited ions in natural, tap and waste waters good reliability of the determination was proved.  相似文献   

19.
This paper indicates the possibility to use near infrared (NIR) spectroscopy as a rapid method to predict quantitatively the content of caffeine and total polyphenols in green tea. A partial least squares (PLS) algorithm is used to perform the calibration. To decide upon the number of PLS factors included in the PLS model, the model is chosen according to the lowest root mean square error of cross-validation (RMSECV) in training. The correlation coefficient R between the NIR predicted and the reference results for the test set is used as an evaluation parameter for the models. The result showed that the correlation coefficients of the prediction models were R = 0.9688 for the caffeine and R = 0.9299 for total polyphenols. The study demonstrates that NIR spectroscopy technology with multivariate calibration analysis can be successfully applied as a rapid method to determine the valid ingredients of tea to control industrial processes.  相似文献   

20.
The univariate and multivariate calibration methods were applied for the determination of trace amounts of palladium based on the catalytic effect on the reaction between resazurine and sulfide. The decrease in absorbance of resazurine at 602 nm over a fixed time is proportional to the concentration of palladium over the range of 10.0-160.0 ng mL(-1). The calibration matrix for partial least squares (PLS) regression was designed with 14 samples. Orthogonal signal correction (OSC) is a preprocessing technique used for removing the information unrelated to the target variables based on constrained principal component analysis. OSC is a suitable preprocessing method for PLS calibration without loss of prediction ability using spectrophotometric method. The root mean square error of prediction (RMSEP) for palladium determination with fixed-time, PLS and OSC-PLS were 3.71, 2.84 and 0.68, respectively. This procedure allows the determination of palladium in synthetic and real samples with good reliability of the determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号