首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mixed crystals of Li[Kx(NH4)1−x]SO4 have been obtained by evaporation from aqueous solution at 313 K using different molar ratios of mixtures of LiKSO4 and LiNH4SO4. The crystals were characterized by Raman scattering and single-crystal and powder X-ray diffraction. Two types of compound were obtained: Li[Kx(NH4)1−x]SO4 with x?0.94 and Li2KNH4(SO4)2. Different phases of Li[Kx(NH4)1−x]SO4 were yielded according to the molar ratio used in the preparation. The first phase is isostructural to the room-temperature phase of LiKSO4. The second phase is the enantiomorph of the first, which is not observed in pure LiKSO4, and the last is a disordered phase, which was also observed in LiKSO4, and can be assumed as a mixture of domains of two preceding phases. In the second type of compound with formula Li2KNH4(SO4)2, the room-temperature phase is hexagonal, symmetry space group P63 with cell-volume nine times that of LiKSO4. In this phase, some cavities are occupied by K+ ions only, and others are occupied by either K+ or NH4+ at random. Thermal analyses of both types of compounds were performed by DSC, ATD, TG and powder X-ray diffraction. The phase transition temperatures for Li[Kx(NH4)1−x]SO4x?0.94 were affected by the random presence of the ammonium ion in this disordered system. The high-temperature phase of Li2KNH4(SO4)2 is also hexagonal, space group P63/mmc with the cell a-parameter double that of LiKSO4. The phase transition is at 471.9 K.  相似文献   

2.
The room temperature structures of the four-layer Aurivillius phase ferroelectrics CaBi4Ti4O15 and BaBi4Ti4O15 are determined by means of single crystal X-ray diffraction. Regarding the CaBi4Ti4O15 phase, in agreement with the tolerance factor, a significant deformation of the perovskite blocks is observed. The rotation system of the octahedra is typical from even layer Aurivillius phases and leads to the use of the space group A21am. For the BaBi4Ti4O15 phase, only a weak variation with respect to the F2mm space group can be suggested from single crystal X-ray diffraction. A significant presence of Ba atoms in the [M2O2] slabs is confirmed in agreement with the previous works but specific Ba2+ and Bi3+ sites have to be considered due to the large difference in bounding requirement of these cations. Possible origins for the ferroelectric relaxor behavior of the Ba-based compound are discussed in view of the presented structural analyses.  相似文献   

3.
NaPd3O4, Na2PdO3 and K3Pd2O4 have been prepared by solid-state reaction of Na2O2 or KO2 and PdO in sealed silica tubes. Crystal structures of the synthesized phases were refined by the Rietveld method from X-ray powder diffraction data. NaPd3O4 (space group Pmn, a=5.64979(6) Å, Z=2) is isostructural to NaPt3O4. It consists of NaO8 cubes and PdO4 squares, corner linked into a three-dimensional framework where the planes of neighboring PdO4 squares are perpendicular to each other. Na2PdO3 (space group C2/c, a=5.3857(1) Å, b=9.3297(1) Å, c=10.8136(2) Å, β=99.437(2)°, Z=8) belongs to the Li2RuO3-structure type, being the layered variant of the NaCl structure, where the layers of octahedral interstices filled with Na+ and Pd4+ cations alternate with Na3 layers along the c-axis. Na2PdO3 exhibits a stacking disorder, detected by electron diffraction and Rietveld refinement. K3Pd2O4, prepared for the first time, crystallizes in the orthorhombic space group Cmcm (a=6.1751(6) Å, b=9.1772(12) Å, c=11.3402(12) Å, Z=4). Its structure is composed of planar PdO4 units connected via common edges to form parallel staggered PdO2 strips, where potassium atoms are located between them. Magnetic susceptibility measurements of K3Pd2O4 reveal a Curie-Weiss behavior in the temperature range above 80 K.  相似文献   

4.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

5.
Solid-state reaction between SrCO3, Cr2O3 and SrF2 has produced the apatite phase Sr10(CrO4)6F2 and Sr2CrO4 which adopts the K2NiF4-type structure. The reaction outcome was very sensitive to the heating rate with rapid rise times favouring the formation of Sr2CrO4, which has been synthesised at ambient pressure for the first time. Powder X-ray diffraction and electron diffraction confirmed that Sr2CrO4 adopts a body centred tetragonal cell (space group I4/mmm) with lattice parameters a=3.8357(1) Å and c=12.7169(1) Å, while a combination of neutron and X-ray diffraction verified Sr10(CrO4)6F2 is hexagonal (space group P63/m) with lattice parameters a=9.9570(1) Å and c=7.4292(1) Å. X-ray photoelectron spectroscopy and magnetic measurements were used to characterise the oxidation states of chromium contained within these phases.  相似文献   

6.
The new compounds, AgMnVO4 and RbMnVO4 have been synthesized by solid state reaction route. Their crystal structures were determined from single-crystal X-ray diffraction data for RbMnVO4 and powder X-ray diffraction data for AgMnVO4. AgMnVO4 crystallizes with the maricite-type structure in space group Pnma, a=9.5778(6) Å, b=6.8518(4) Å, c=5.3734(3) Å and Z=4. RbMnVO4 crystallizes in space group P63 with a stuffed tridymite-type structure, a=11.2584(3), c=8.9893(13) Å and Z=8. A merohedral twinning was taken into account for its structural refinement. To our knowledge this is the first vanadate showing this structural type. AgMnVO4 and RbMnVO4 were characterized by magnetic susceptibility and specific heat measurements. AgMnVO4 is antiferromagnetic with a Néel temperature of 12.3 K determined by specific heat measurements. RbMnVO4 exhibits canted antiferromagnetism with a Néel temperature of 6.5 K.  相似文献   

7.
Three new tellurites, LaTeNbO6 and La4Te6M2O23 (M=Nb or Ta) have been synthesized, as bulk phase powders and crystals, by using La2O3, Nb2O5 (or Ta2O5), and TeO2 as reagents. The structures of LaTeNbO6 and La4Te6Ta2O23 were determined by single crystal X-ray diffraction. LaTeNbO6 consists of one-dimensional corner-linked chains of NbO6 octahedra that are connected by TeO3 polyhedra. La4Te6M2O23 (M=Nb or Ta) is composed of corner-linked chains of MO6 octahedra that are also connected by TeO4 and two TeO3 polyhedra. In all of the reported materials, Te4+ is in an asymmetric coordination environment attributable to its stereo-active lone-pair. Infrared, thermogravimetric, and dielectric analyses are also presented. Crystallographic information: LaTeNbO6, triclinic, space group P−1, a=6.7842(6) Å, b=7.4473(6) Å, c=10.7519(9) Å, α=79.6490(10)°, β=76.920(2)°, γ=89.923(2)°, Z=4; La4Te6Ta2O23, monoclinic, space group C2/c, a=23.4676(17) Å, b=12.1291(9) Å, c=7.6416(6) Å, β=101.2580(10)°, Z=4.  相似文献   

8.
Bi3Fe0.5Nb1.5O9 was synthesized using conventional solid state techniques and its crystal structure was refined by the Rietveld method using neutron powder diffraction data. The oxide adopts an Aurivillius-type structure with non-centrosymmetric space group symmetry A21am (a=5.47016(9) Å, b=5.43492(9) Å, c=25.4232(4) Å), analogous to other Aurivillius compounds that exhibit ferroelectricity. The Fe and Nb cations are disordered on the same crystallographic site. The [(Fe,Nb)O6] octahedra exhibit tilting and distortion to accommodate the bonding requirements of the Bi cations located in the perovskite double layers. Magnetic measurements indicate non-Curie-Weiss-type paramagnetic behavior from 300 to 6 K. Measurements of dielectric properties and electrical resistivity exhibited changes near 250-260 °C and are suggestive of a ferroelectric transition.  相似文献   

9.
We present here the results of X-ray diffraction (XRD), dielectric and calorimetric studies on lead magnesium tungustate, Pb(Mg0.5W0.5)O3 (PMW) ceramic. It is shown that the low temperature antiferroelectric phase of PMW having orthorhombic structure (space group Pmcn) transforms to paraelectric cubic (space group Fm3m) phase at 281 K. The phase transition is of first order character as confirmed by coexistence of Pmcn and Fm3m phases over wide temperature range ∼50 K. The first order character of phase transition is also revealed by the observation of thermal hysteresis in the real part of dielectric permittivity and calorimetric studies. We do not find any evidence for the additional intermediate phase between antiferroelectric (Pmcn) and paraelectric (Fm3m) phases as reported in the literature. Anomalies in the heat flow and dielectric measurements support the finding of our XRD results and reveals that the phase transition temperature (Tc) is 281 K instead of 312 K reported in the literature.  相似文献   

10.
The results of the X-ray structural study for the K4LiH3(SO4)4 single crystal are presented at a wide temperature range. The thermal expansion of the crystal using the X-ray dilatometry and the capacitance dilatometry from 8 to 500 K was carried out. The crystal structures data collection, solution and refinement at 125, 295, 443 and 480 K were performed. The K4LiH3(SO4)4 crystal has tetragonal symmetry with the P41 space group (Z=4) at room temperature as well as at the considered temperature range. The existence of a low-temperature, para-ferroelastic phase transition at about 120 K is excluded. The layered structure of the crystal reflects a cleavage plane parallel to (001) and an anisotropy of the protonic conductivity. The superionic high-temperature phase transition at TS=425 K is isostructural. Nevertheless, taking into account an increase of the SO4 tetrahedra libration above TS, a mechanism of the Grotthus type could be applied for the proton transport explanation.  相似文献   

11.
The ternary nitrides, Ca4TiN4 and Ca5NbN5, were synthesized in sealed niobium tubes using lithium nitride as a flux at 900 and 1050 °C, respectively. The structures of both compounds were solved from single-crystal X-ray diffraction data. Ca4TiN4 is the first example of a calcium group IV nitride; it crystallizes in the triclinic space group (No. 2) with cell parameters a=5.9757(5) Å, b=6.0129(5) Å, c=6.0116(12) Å, α=71.565(4)°, β=79.471(4)°, γ=68.258(4)° and Z=2. Ca4TiN4 is isostructural with Na4TiO4 and contains tetrahedral TiN4 units connected through edges and corners to CaN4 tetrahedra and CaN5 square pyramids. Ca5NbN5 crystallizes in the monoclinic space group C2/m (No. 12) with cell parameters a=11.922(7) Å, b=6.878(5) Å, c=8.936(7) Å, β=101.22(3)° and Z=4. Ca5NbN5 is isostructural with Ba5NbN5; the structure contains NbN4 tetrahedra that share vertices with CaN5 trigonal bipyramids.  相似文献   

12.
Crystal structures of Pb(MoO2)2(PO4)2 and Ba(MoO2)2(PO4)2 were determined. Both compounds contain the molybdyl group MoO2. The monoclinic unit-cell parameters are a = 6.353(7), b = 12.289(4), c = 11.800 Å, β = 92°56(6), and Z = 4 for the lead salt and a = 6.383(8), b = 7.142(7), c = 9.953(8) Å, β = 95°46(8), and Z = 2 for the barium salt. P21c is the common space group. The R values are respectively R = 0.027 and R = 0.031 for 1964 and 1714 independent reflections. The frameworks built up by a three-dimensional network of monophosphate PO4 and molybdyl MoO2 groups are similar, characterized mainly by corner-sharing PO4 and MoO6 polyhedra. Two oxygen atoms of each MoO6 group are bonded to the molybdenum atom only as in other molybdyl salts.  相似文献   

13.
Two new gallium phosphates, [NH3(CH2)4NH3][Ga4(PO4)4 (HPO4)] (I) and [NH3(CH2)4NH3][Ga(PO4)(HPO4)] (II), have been synthesized under solvothermal conditions in the presence of 1,4-diaminobutane and their structures determined using room-temperature single-crystal X-ray diffraction data. Compound (I) (Mr=844.90, triclinic, space group P-1, a=9.3619(3), b=10.1158(3) and c=12.6456(5) Å, α=98.485(1), β=107.018(2) and γ=105.424(1)°; V=1070.39 Å3, Z=2, R=3.68% and Rw=4.40% for 2918 observed data [I>3(σ(I))]) consists of GaO4 and PO4 tetrahedra and GaO5 trigonal bipyramids linked to generate an open three-dimensional framework containing 4-, 6-, 8-, and 12-membered rings of alternating Ga- and P-based polyhedra. 1,4-Diaminobutane dications are located in channels bounded by the 12-membered rings in the two-dimensional pore network and are held to the framework by hydrogen bonding. Compound (II) (Mr=350.84, monoclinic, space group P21/c, a=4.8922(1), b=18.3638(6) and c=13.7468(5) Å, β=94.581(1)°; V=1227.76 Å3, Z=4, R=2.95% and Rw=3.37% for 2050 observed data [I>3(σ(I))]) contains chains of edge-sharing 4-membered rings of alternating GaO4 and PO4 tetrahedra constituting a backbone from which hang ‘pendant’ PO3(OH) groups. Hydrogen bonding between the GaPO framework and the diamine dications holds the structure together. A previously reported phase, [NH3(CH2)4NH3][Ga4(PO4)4(HPO4)] (V), structurally related but distinct from its stoichiometric equivalent, (I), has been prepared as a pure phase by this method. Two further materials, [NH3(CH2)5NH3][Ga4(PO4)4(HPO4)] (III) (tricli- nic, lattice parameters from PXD: a=9.3565(4), b=5.0156(2) and c=12.7065(4) Å, α=96.612(3), β=102.747(4) and γ=105.277(3)°) and [NH3(CH2)5NH3][Ga(PO4)(HPO4)] (IV) (Mr=364.86, monoclinic, space group P21/n, a=4.9239(2), b=13.2843(4) and c=19.5339(7) Å, β=96.858(1)°; V=1268.58 Å3, Z=4, R=3.74% and Rw=4.44% for 2224 observed room-temperature data [I>3(σ(I))]), were also prepared under similar conditions in the presence of 1,5-diaminopentane. (III) and (IV) are structurally related to, yet distinct from (I) and (II) respectively.  相似文献   

14.
A new rare earth nickel stannide, Sm2NiSn4, has been prepared by reacting the pure elements at high temperature in welded tantalum tubes. Its crystal structure was established by single crystal X-ray diffraction studies. Sm2NiSn4 crystallizes in the orthorhombic space group Pnma (No. 62) with cell parameters of a=16.878(2) Å, b=4.4490(7) Å, c=8.915(1) Å, and Z=4. Its structure can be viewed as the intermediate type between ZrSi2 and CeNiSi2. Sm2NiSn4 features two-dimensional (2D) corrugated [NiSn4]6− layers in which the 1D Sn zigzag chains and the 2D Sn square sheets are bridged by Ni atoms. The Sm3+ cations are located at the interlayer space. Results of both resistivity measurements and extended-Hückel tight-binding band structure calculations indicate that Sm2NiSn4 is metallic.  相似文献   

15.
Single crystals of Ca3Cu3(PO4)4 synthesized hydrothermally at 420°C and 55 kpsi (3.8 kbar) were found to occur in the space group P21a (No. 14) with a = = 17.619(2), b = 4.8995(4), c = 8.917(1)Å, β = 124.08(1)°, and Z = 2. Full-matrix least-squares refinement of the structure using diffractometer data converged to a final anisotropic R = 0.037 (Rw = 0.046). The two calcium atoms are in six- and nine-coordination and the two copper-containing polyhedra (four- and five-coordinated) are similar to those previously found in Cu3(PO4)2.  相似文献   

16.
The title compounds have been obtained by solid state reactions of the corresponding pure elements at high temperature, and structurally characterized by single-crystal X-ray diffraction studies. Yb5Ni4Sn10 adopts the Sc5Co4Si10 structure type and crystallizes in the tetragonal space group P4/mbm (No. 127) with cell parameters of a=13.785(4) Å, c=4.492 (2) Å, V=853.7(5) Å3, and Z=2. Yb7Ni4Sn13 is isostructural with Yb7Co4InGe12 and crystallizes in the tetragonal space group P4/m (No. 83) with cell parameters of a=11.1429(6) Å, c=4.5318(4) Å, V=562.69(7) Å3, and Z=1. Both structures feature three-dimensional (3D) frameworks based on three different types of one-dimensional (1D) channels, which are occupied by the Yb atoms. Electronic structure calculations based on density functional theory (DFT) indicate that both compounds are metallic. These results are in agreement with those from temperature-dependent resistivity and magnetic susceptibility measurements.  相似文献   

17.
Single crystals of Tb4MGa12 (M=Pd, Pt) have been synthesized. The isostructural compounds crystallize in the cubic space group , with Z=2 and lattice parameters: a=8.5940(5) and 8.5850(3) Å for Tb4PdGa12 and Tb4PtGa12, respectively. The crystal structure consists of corner-sharing MGa6 octahedra and TbGa3 cuboctahedra. Magnetic measurements suggest that Tb4PdGa12 is an antiferromagnetic metamagnet with a Néel temperature of 16 K, while the Pt analog orders at TN=12 K.  相似文献   

18.
Two new niobium phosphates were synthesized and their crystal structures determined from single-crystal X-ray data. [NbOF(PO4)](N2C5H7) (1) (monoclinic, space group P21/c, a=11.442(1), b=9.1983(7), c=9.1696(8) Å, β=109.94(1)°) has a layered structure and is the first example of a negatively charged NbOF(PO4) layer analogous to the MO(H2O)PO4 (M=V, Nb) layers. The layer charge is compensated by interlayer 4-aminopyridnium cations that adopt an unusual arrangement as a consequence of H-bonding and π-π interactions. The interlayer aminopyridnium cations can be exchanged with alkylammonium ions which form bilayers inclined at ∼65° to the NbOF(PO4) layer. [(Nb0.9V1.1)O2(PO4)2(H2PO4)] (N2C2H10) (2) (orthorhombic, space group Pbca, a=15.821(2),b=9.0295(9),c=18.301(2) Å) has a disordered three-dimensional structure based on NbO(PO4) layers cross-linked by phosphate tetrahedra, and has a similar structure to the known vanadium analog [V2O2(PO4)2(H2PO4)] (N2C2H10).  相似文献   

19.
Rietveld refinement of powder neutron diffraction data has been used to study the crystal structures of the four-layer Aurivillius-phase ferroelectrics Bi5Ti3FeO15 (at 25°C) and SrBi4Ti4O15 (at a series of temperatures up to 800°C). At 25°C both materials adopt the polar orthorhombic space group A21am, in common with two-layer analogues such as SrBi2Ta2O9. At temperatures well above the ferroelectric Curie temperature (i.e., at temperatures of 650°C and above, with Tc∼550°C) SrBi4Ti4O15 transforms to the centrosymmetric tetragonal space group I4/mmm. However, there is good evidence from the raw diffraction data of a very subtle intermediate paraelectric orthorhombic phase, of Amam symmetry, in the region 550>650°C. The distortion in the ferroelectric phase can be traced to displacements of the cations in the A site of the perovskite block, with cooperative tilting of the BO6 octahedra. The nature of the octahedral tilt system, cation disorder at the perovskite A and B sites, and the phase transition sequence in SrBi4Ti4O15, which parallels that found in SrBi2Ta2O9, are discussed.  相似文献   

20.
A complete series of solid solutions was prepared in the SrZr(PO4)2-BaZr(PO4)2 system and examined by conventional X-ray powder diffraction (XRPD). The crystals of SrxBa1−xZr(PO4)2 with x?0.1 were isomorphous with yavapaiite (KFe(SO4)2, space group C2/m). The solid solution with 0.2?x?0.7 has been composed of a new phase, showing a superstructure along the a-axis (c-axis of the yavapaiite substructure). The crystals with 0.8?x?0.9 were composed of both the new phase and the triclinic phase, the latter being isostructural with SrZr(PO4)2 (x=1). The crystal structure of the new phase has been determined using direct methods, and it has been further refined by the Rietveld method. The crystal of Sr0.7Ba0.3Zr(PO4)2 (x=0.7) is monoclinic (space group P2/c, Z=4 and Dx/Mg m−3=3.73) with a=1.53370(8) nm, b=0.52991(3) nm, c=0.84132(4) nm, β=92.278(1)° and V=0.68321(6) nm3. Final reliability indices are Rwp=7.32%, Rp=5.60% and RB=3.22%. The powder specimen was also examined by high-temperature XRPD and differential thermal analysis (DTA) to reveal the occurrence of two phase transitions during heating; the space group changed from P2/c to C2/m at ∼400 K, followed by the monoclinic-to-hexagonal (or trigonal) transition at 1060 K. The P2/c-to-C2/m transition has been, for the first time, described in the yavapaiite-type compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号