首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Quenching of triplet states of carbocyanine dyes by nitroxyl radical has been investigated by the flash photolysis method. Quenching of triplet state carbocyanine dyes with one polymethyne chain occurs via enhanced intersystem crossing on exchange interaction with the radical. Quenching of triplet state carbocyanine dyes with two polymethyne chains occurs via partial charge transfer in the collision complex with the radical. In the second case, an increase in the dielectric constant of the solvent leads to an increase of the rate of quenching. In high polarity solvents (propanol, methanol) complete electron transfer from dye triplet state to radical occurs. Kinetic and spectral characteristics of a new dye radical (Dye.+) are reported.  相似文献   

2.
Abstract— The long lived triplets from all-trans retinal and 11-cis retinal are quenched by a nitroxyl radical, 4-hydroxy-2,2,6,6-tetramethylpiperidinoyl, with essentially identical rate constants. The rates vary with solvent but do not correlate with solvent polarity. The results confirm implications of earlier work with oxygen quenching and are compatible with the view that isomerization occurs in non-relaxed triplets or that the triplet (or triplets) observed spectroscopically decay by way of a single triplet state which has a small electronic energy gap to ground state isomers.  相似文献   

3.
Quenching of triplet states of aromatic hydrocarbons by nitroxyl radicals has been investigated by the flash photolysis method. There are two different mechanisms of triplet quenching: quenching occurs via enhanced intersystem crossing on exchange interaction with the radical for the triplet states of aromatic hydrocarbons which have low triplet energy (ET < 14700 cm?1); for very high triplet energies, energy transfer from the triplet molecule to the nitroxyl radical occurs. The energy of the excited nitroxyl radical was estimated to be 18000 cm?1.  相似文献   

4.
Monomers and aggregates of Merocyanine 540 (MC540) in water are able to photoisomerize. The shape of the photoisomer absorption spectrum is very similar to that of the ground state. Triplet state of MC540 in water has been produced by energy transfer from triplet anthracene and displays a broad absorption spectrum between 600 and 700 nm. The triplet state may also be produced by direct excitation of MC540 with UV light. However, when the dye is excited by visible light, no triplet state absorbance in the red could be detected so that the triplet yield of MC540 in water seems to be excitation wavelength dependent.  相似文献   

5.
The photophysical properties of merocyanine 540 have been determined in methanol solution over a modest temperature range. Triplet state population is inefficient (the limiting triplet quantum yield being 0.25) due to rapid isomerization of the central double bond from the first excited singlet state. Activation energies have been measured for isomerization from the excited singlet state (20 kJ mol-1) and for conversion of the resultant cis-isomer back to the original trans-form (63 kJ mol-1), both processes involving formation of a twisted species. The dye is easily oxidized to give an unstable adduct which decomposes on the sub-ms timescale. Reversible redox chemistry occurs upon excitation in the presence of electron acceptors. These various observations are discussed in terms of the known chemotherapeutic activity of MC540 and it is concluded that the most probable mechanisms for cytotoxicity involve either local thermal disruption of cell membranes or in situ photogeneration of toxins derived from breakdown of the dye.  相似文献   

6.
Mechanisms of carbazole photoluminescence quenching by the free and chemically bound nitroxyl radicals in the model bound system “carbazole (CBZ)—imidazolidine nitroxyl radical R” were investigated and the photophysical properties of the system were studied and compared with those of free CBZ and R in solution. The quantum yield and lifetime of fluorescence from the local singlet excited state of the carbazole moiety in the bound CBZ—R system is three orders of magnitude lower than in free CBZ. The lifetime of the local triplet excited state of the carbazole moiety in the bound system is shorter than 50 ns. The rate constants for intermolecular quenching of the singlet and triplet excited states of free CBZ by R in acetonitrile were found to be (1.4±0.1)·1010 and (1.5±0.2)·109 L mol−1 s−1, respectively. The most plausible mechanisms of both free and covalently bound carbazole luminescence quenching by nitroxyl radicals are exchange energy transfer and acceleration of internal conversion due to electron exchange.  相似文献   

7.
Photochromic nitrospiropyrans substituted with 2,2'-bipyridine (bpy), [Ru(bpy)3]2+, and [Os(bpy)3]2+ groups were synthesized, and their photophysical, photochemical, and redox properties investigated. Substitution of the spiropyran with the metal complex moiety results in strongly decreased efficiency of the ring-opening process as a result of energy transfer from the excited spiropyran to the metal center. The lowest excited triplet state of the spiropyran in its open merocyanine form is lower in energy than the excited triplet MLCT level of the [Ru(bpy)3]2+ moiety but higher in energy than for [Os(bpy)3]2+, resulting in energy transfer from the excited ruthenium center to the spiropyran but inversely in the osmium case. The open merocyanine form reduces and oxidizes electrochemically more easily than the closed nitrospiropyran. Like photoexcitation, electrochemical activation also causes opening of the spiropyran ring by first reducing the closed form and subsequently reoxidizing the corresponding radical anion in two well-resolved anodic steps. Interestingly, the substitution of the spiropyran with a Ru or Os metal center does not affect the efficiency of this electrochemically induced ring-opening process, different from the photochemical path.  相似文献   

8.
Action spectra of the antileukemic and antiviral activities of merocyanine 540 (MC540) were determined using L1210 leukemia cells and human Herpes simplex virus type 1. The major peak of both action spectra aligned closely with the absorption spectrum of membrane-bound dye monomer, and by implication, the action spectrum of 1O2 generation. These results are compatible with the notion that the antileukemic and antiviral activities of MC540 are primarily attributable to membrane-bound monomer and at least in part mediated by 1O2.  相似文献   

9.
TR ESR spectroscopy was applied to the study of the quenching of excited dioxouranium (VI) (uranyl) nitrate and sulfate by stable nitroxyl radicals of the 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) family. Photoexcitation of uranyl in solutions of alcohols of moderate viscosity (η = 3-10 cP) in the presence of TEMPO leads to CIDEP signals of TEMPO due to a radical triplet pair mechanism (RTPM). Polarized nitroxyls were also observed in solutions of polyelectrolyte sodium poly(styrenesulfonate), NaPSS, in the presence of the nitroxyl with a positively charged trimethylammonium group. Photolysis of uranyl salts in solutions of alcohols leads to the generation of free radicals of alcohols. No CIDEP of these radicals was observed, distinguishing U2 2+* from its organic analog, the triplet benzophenone. The probable reason for the lack of polarization in uranyl photoreduction reactions is the difficult access of free radicals to the U atom of the solvated radical UO2+ (V); this atom bears the unpaired electron. The role of polyelectrolytes in the enhancement of the quenching of excited states is discussed. Results are in agreement with the statement that photoexcited uranyl has a triplet multiplicity.  相似文献   

10.
Molecular design, synthesis and photochromic properties of spirooxazines and fulgides are described. In the case of fulgides, the change of the substituents may lead to different photochromic properties and different photoreactions of the kind of compounds. In photochromic process of pyrryl-substituted fulgides, the excited singlet state is the mam species, but the excited triplet state is also involved. However, no excited triplet state has been observed in cyclization of aryl-substituted fulgides. In the case of spirooxazines, the substituents at 2'-position have great effect on the formation of photoproduct and on the mechanism of photoreaction. The increase of steric hindrance of the 2'-position substituent gives rise to the decrease of the quantum yield for the formation of photochromic merocyanine (PMC) and the increase of the relative quantum yield for the charge separated twist intermediate (CT).  相似文献   

11.
L1210 leukemia cells were synchronized by a double thymidine block technique and then characterized with regard to their susceptibility to merocyanine 540 (MC540)-sensitized photoinactivation. Cells harvested 5 (G2/M phase) h after release from the second thymidine block were most susceptible to MC540-sensitized photoinactivation followed, in order of decreasing sensitivity, by cells harvested 2 (S phase) h and by cells harvested 7 (G1 phase) h after release from the second block. The expression of dye-binding sites changed very little during the cell cycle.  相似文献   

12.
The photoreduction of 6-nitrospiro[2H-1-benzopyran-2,2'-indoline] (N1) and two derivatives (N2 and N3) by diethylamine or triethylamine (TEA) in solution was studied by pulsed and steady-state photolysis. The quantum yield of coloration of the ring-closed Sp form, due to photoinduced ring opening, decreases in acetonitrile with increasing the TEA concentration. The main reason is reaction of TEA with the triplet-excited open merocyanine form. Quenching of this triplet state by amines is rather inefficient for N1-N3; the rate constant for triplet quenching by TEA is k(6) = (2-3) × 10(6) M(-1) s(-1). The secondary transient with an absorption maximum at 420 nm is ascribed to the radical anion. This and the corresponding α-aminoethyl radical subsequently undergo slow termination reactions, yielding a relatively stable product with a maximum at 420-450 nm, which is attributed to a ring-opened dihydromerocyanine (MH(-)). The mechanisms of the two subsequent reduction reactions are discussed. Using acetone as sensitizer the same dihydroproduct was obtained with the Sp form as acceptor, indicating a reaction sequence from photogenerated radicals via a ring-opened radical to MH(-)/MH(2). The effect of TEA concentration on the direct and ketone-sensitized reduction mechanisms was analyzed. Photoreduction by amines, due to competing triplet quenching, is strongly decreased on admission of oxygen.  相似文献   

13.
Polymers tagged with a local pH reporter were synthesized. A methacrylate-type monomer containing a merocyanine dye residue as a reporter dye—1-(2-methacryloyloxyethyl)-4-(2-(4-hydroxyphenyl)-ethenyl)quinolinium bromide—was synthesized. Its homopolymer and copolymers with sodium 2-acrylamido-2-methylpropanesulfonate were prepared by free radical polymerization. These polymers showed a characteristic color change in aqueous solutions from yellow to red with increasing pH from acidic to basic conditions according to the acid-base equilibria of the merocyanine dye residues. Since the electrostatic potential and polarity of media have a strong effect on the acid–base equilibria, the pendant merocyanine residues are expected to serve as a reporter to provide information on the local environments around the polymer chain at which the dye molecules are incorporated.  相似文献   

14.
A molecular dyad has been synthesized in which the main chromophore is a 1,4-diethynylated benzene residue terminated with pyrene moieties, this latter unit acting as a single chromophore. A spiropyran group has been condensed to the central phenylene ring so as to position a weak electron donor close to the pyrene unit. Illumination of the pyrene-based chromophore leads to formation of a fluorescent exciplex in polar solvents but pyrene-like fluorescence is observed in nonpolar solvents. The exciplex has a lifetime of a few nanoseconds and undergoes intersystem crossing to the pyrene-like triplet state with low efficiency. Attaching a 4-nitrobenzene group to the open end of the spiropyran unit creates a new route for decay of the exciplex whereby the triplet state of the spiropyran is formed. Nonradiative decay of this latter species results in ring opening to form the corresponding merocyanine species. Rate constants for the various steps have been obtained from time-resolved fluorescence spectroscopy carried out over a modest temperature range. Under visible light illumination, the merocyanine form reverts to the original spiropyran geometry so that the cycle is closed. Energy transfer from the pyrene chromophore to the merocyanine unit leads to an increased rate of ring closure and serves to push the steady-state composition in favor of the spiropyran form.  相似文献   

15.
A decrease in nitrogen hyperfine splitting constant (N-hfsc) with increasing solvent polarity is reported for t-butyl t-butoxy nitroxyl radical produced by trapping t-butoxyl radical with 2-methyl-2-nitrosopropane.  相似文献   

16.
The triplet yield and intersystem crossing rate of a set of conjugated oligomers and polymers that, in polar solvents, form a charge-transfer state with a twisted conformation has been investigated. It was observed that in these dibenzothiophene-fluorene oligomers a greater than 10-fold increase on the triplet yield is achieved by simply changing the medium polarity to favor the formation of the twisted charge-transfer state, while the fluorescence lifetime is only slightly increased. The increase in the intersystem crossing rate is attributed to the improved mixing between the singlet and triplet states in the twisted excited state. In analogous polymers, the intersystem crossing rate does not show the same increase, most likely because of the greater energetic and conformational disorder increasing the intersystem crossing rate at all times, regardless of the formation of the twisted charge-transfer state or not.  相似文献   

17.
Abstract— Application of a static external magnetic field (3350 G) during UV-irradiation (>300 nm) reduced the time for 50% photohemolysis of human erythrocytes by the phototoxic drug ketoprofen (3-benzoyl-α-methylbenzoacetic acid) from 96 min to 78 min. This observation can be attributed to a magnetic field induced decrease in the rate of intersystem crossing (kISC) of the geminate triplet radical pair generated by the reduction of ketoprofen in its triplet excited state by erythrocyte membrane constituents, probably lipids. The decrease in kJSC results in an increase in the concentration and/or lifetime of free radicals that escape from the triplet radical pair. Thus the critical radical concentration needed to cause membrane damage and cell lysis is reached sooner in the presence of the magnetic field. In contrast, the photohemolysis induced by the photodynamic agent protoporphyrin IX was not affected by the magnetic field. Protoporphyrin IX photohemolysis, which is initiated by singlet oxygen, does not involve the initial generation of a triplet radical pair and so is not influenced by the magnetic field. The enhancement of ketoprofen-induced photohemolysis by an externally applied magnetic field is the first example of a magnetic field effect on a toxicological process involving free radicals.  相似文献   

18.
Results from intramolecular singlet and triplet specific reactivity in solvents of different Polarity suggest that the spin state equilibrium of 1,2-diphenyl-1-butylidene, a triplet ground state carbene. is largely susceptible to solvent polarity. The results are consistent with stabilization of the zwitterionic singlet state in solvents of high polarity.  相似文献   

19.
Hitherto, the decay mechanisms of nitrosated dithiols as well as formation of related products have not been conclusively elucidated. In this paper, we demonstrate that nitrosated dl-dithiothreitol (DTT) decays via two independent pathways, that is, one producing exclusively nitric oxide and one producing (initially) nitroxyl (HNO/3NO-). The importance of the two decomposition pathways depends on the degree of nitrosation of DTT. Dinitroso-dithiothreitol (NODTTNO) generates quantitatively nitric oxide, whereas mononitroso-dithiothreitol (NODTT) yields initially nitroxyl. Since NODTT and DTT are both targets for nitroxyl, their availability governs the HNO-derived formation of nitric oxide (with NODTT as reactant) or hydroxyl amine and ammonium ion (with DTT as reactant). The formation of NH4+ from the HNO-DTT reaction probably proceeds by a stepwise, NH2OH-independent mechanism, because DTT-derived sulfinamide was identified by N-15 NMR spectrometry as an intermediate. Our data are in line with the assumption that triplet nitroxyl (3NO-) is formed by a unimolecular decay of the deprotonated (thiolate) form of NODTT, because CBS-QB3 calculations predict the existence of a low-lying triplet state of the latter species. The identified pathways are proposed to be of general importance for physiological systems because control experiments showed that the physiological dithiol thioredoxin reacts in a similar manner.  相似文献   

20.
Photoisomerization of merocyanine 540 (MC540) in a polymer-surfactant aggregate is studied using picosecond time resolved emission spectroscopy. The aggregate consists of the polymer, poly(vinylpyrrolidone) (PVP) and the surfactant, sodium dodecyl sulphate (SDS). With increase in the concentration of SDS in an aqueous solution of MC540 containing PVP, the emission quantum yield and lifetime of MC540 increase markedly. This indicates marked retardation in the nonradiative photoisomerization process of MC540, when it binds to the polymer-surfactant aggregate. The critical association concentration of SDS for binding to PVP has been found to be 0.5 mM. This is about 16 times lower than the CMC of SDS in pure water (8 mM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号