首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Time-dependent fields are a valuable tool to control fundamental quantum phenomena in highly coherent low dimensional electron systems. Carbon nanotubes and graphene are a promising ground for these studies. Here we offer a brief overview of driven electronic transport in carbon-based materials with the main focus on carbon nanotubes. Recent results predicting control of the current and noise in nanotube based Fabry–Pérot devices are highlighted. To cite this article: L.E.F. Foa Torres, G. Cuniberti, C. R. Physique 10 (2009).  相似文献   

2.
Carbon-based nano-materials, such as graphene and carbon nanotubes, represent a fascinating research area aiming at exploring their remarkable physical and electronic properties. These materials not only constitute a playground for physicists, they are also very promising for practical applications and are envisioned as elementary bricks of the future of the nano-electronics. As for graphene, its potential already lies in the domain of opto-electronics where its unique electronic and optical properties can be fully exploited. Indeed, recent technological advances have demonstrated its effectiveness in the fabrication of solar cells and ultra-fast lasers, as well as touch-screens and sensitive photo-detectors. Although the photo-voltaic technology is now dominated by silicon-based devices, the use of graphene could very well provide higher efficiency. However, before the applied research to take place, one must first demonstrates the operativeness of carbon-based nano-materials, and this is where the fundamental research comes into play. In this context, the use of magnetic field has been proven extremely useful for addressing their fundamental properties as it provides an external and adjustable parameter which drastically modifies their electronic band structure. In order to induce some significant changes, very high magnetic fields are required and can be provided using both DC and pulsed technology, depending of the experimental constraints. In this article, we review some of the challenging experiments on single nano-objects performed in high magnetic and low temperature. We shall mainly focus on the high-field magneto-optical and magneto-transport experiments which provided comprehensive understanding of the peculiar Landau level quantization of the Dirac-type charge carriers in graphene and thin graphite.  相似文献   

3.
We review models for the nucleation of magnetisation reversal, i.e. the formation of a region of reversed magnetisation in an initially magnetically saturated system. For small particles, models for collective reversal, either uniform (Stoner–Wohlfarth model) or non-uniform like curling, provide good agreement between theory and experiment. For microscopic objects and thin films, we consider two models, uniform (Stoner–Wohlfarth) reversal inside a nucleation volume and a droplet model, where the free energy of an inverse bubble is calculated, taking into account volume energy (Zeeman energy) and surface tension (domain wall energy). In macroscopic systems, inhomogeneities in magnetic properties cause a distribution of energy barriers for nucleation, which strongly influences effects of temperature and applied field on magnetisation reversal. For these systems, macroscopic material parameters like exchange interaction, spontaneous magnetisation and magnetic anisotropy can give an indication of the magnetic coercivity, but exact values for nucleation fields are, in general, hard to predict. To cite this article: J. Vogel et al., C. R. Physique 7 (2006).  相似文献   

4.
Hard X-ray PhotoEmission Spectroscopy (HAXPES) is a new tool for the study of bulk electronic properties of solids using synchrotron radiation. We review recent achievements of HAXPES, with particular reference to the VOLPE project, showing that high energy resolution and bulk sensitivity can be obtained at kinetic energies of 6–8 keV. We present also the results of recent studies on strongly correlated materials, such as vanadium sesquioxide and bilayered manganites, revealing the presence of different screening properties in the bulk with respect to the surface. We discuss the relevant experimental features of the metal–insulator transition in these materials. To cite this article: G. Panaccione et al., C. R. Physique 9 (2008).  相似文献   

5.
Predictive simulations of the defect population evolution in materials under or after irradiation can be performed in a multi-scale approach, where the atomistic properties of defects are determined by electronic structure calculations based on the Density Functional Theory and used as input for kinetic simulations covering macroscopic time and length scales. Recent advances obtained in iron are presented. The determination of the 3D migration of self-interstitial atoms instead of a fast one-dimensional glide induced an overall revision of the widely accepted picture of radiation damage predicted by previously existing empirical potentials. A coupled ab initio and mesoscopic kinetic Monte Carlo simulation provided strong evidence to clarify controversial interpretations of electrical resistivity recovery experiments concerning the mobility of vacancies, self-interstitial atoms, and their clusters. The results on the dissolution and migration properties of helium in α-Fe were used to parameterize Rate Theory models and new inter-atomic potentials, which improved the understanding of fusion reactor materials behavior. Finally, the effects of carbon, present in all steels as the principal hardening element, are also shown. To cite this article: C.C. Fu, F. Willaime, C. R. Physique 9 (2008).  相似文献   

6.
Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS). Proofs of concept of several high performance devices already exist, usually at the single device level, but there remain many serious scientific issues to be solved before the viability of such routes can be evaluated. In particular, the main concern regards the controlled synthesis and positioning of nanotubes. In our opinion, truly innovative use of these nano-objects will come from: (i) the combination of some of their complementary physical properties, such as combining their electrical and mechanical properties; (ii) the combination of their properties with additional benefits coming from other molecules grafted on the nanotubes (this route being particularly relevant for gas- and bio-sensors, opto-electronic devices and energy sources); and (iii) the use of chemically- or bio-directed self-assembly processes to allow the efficient combination of several devices into functional arrays or circuits. In this article, we review our recent results concerning nanotube chemistry and assembly and their use to develop electronic devices. In particular, we present carbon nanotube field effect transistors and their chemical optimization, high frequency nanotube transistors, nanotube-based opto-electronic devices with memory capabilities and nanotube-based nano-electromechanical systems (NEMS). The impact of chemical functionalization on the electronic properties of CNTs is analyzed on the basis of theoretical calculations. To cite this article: V. Derycke et al., C. R. Physique 10 (2009).  相似文献   

7.
This article presents the use of composite resonant metamaterials for the design of highly directive subwavelength cavity antennas. These metamaterials, composed of planar metallic patterns periodically organized on dielectric substrates, exhibit frequency dispersive phase characteristics. Different models of metamaterial-based surfaces (metasurfaces), introducing a zero degree reflection phase shift to incident waves, are firstly studied where the bandwidth and operation frequency are predicted. These surfaces are then applied in a resonant Fabry–Perot type cavity and a ray optics analysis is used to design different models of ultra-compact high-gain microstrip printed antennas. Another surface presenting a variable reflection phase by the use of a non-periodic metamaterial-based metallic strips array is designed for a passive low-profile steering beam antenna application. Finally, the incorporation of active electronic components on the metasurfaces, allowing an electronic control of the phase responses, is applied to an operation frequency reconfigurable cavity and a beam steering cavity. All these cavity antennas operate on subwavelength modes, the smallest cavity thickness being of the order of λ/60. To cite this article: A. Ourir et al., C. R. Physique 10 (2009).  相似文献   

8.
A method is proposed to get information about carrier distribution function in superlattices and multiple quantum-well structures from the analysis of the vertical transport experiments in a transverse magnetic field. The method was applied to the GaAs/AlGaAs superlattices with wide quantum wells in strong (B=0–7 T) magnetic fields. It was shown that the distribution function of electron is nonequilibrium Boltzmann-like, with electronic temperature T=10–20 K.  相似文献   

9.
Nuclear resonance scattering is an atomistic spectroscopy sensitive to magnetic and electronic properties as well as slow and fast structural dynamics. Applications, which take advantage of both the outstanding properties of third generation synchrotron radiation sources and those of the Mössbauer effect, benefit most. Examples resulting from investigations at the ESRF will be given in applications to high pressure and low temperatures, nano-scale materials, and dynamics of disordered systems. To cite this article: R. Rüffer, C. R. Physique 9 (2008).  相似文献   

10.
In this introductory article we attempt to provide the theoretical basis for developing the interaction between X-rays and matter, so that one can unravel properties of matter by interpretation of X-ray experiments on samples. We emphasize that we are dealing with the basics, which means that we shall limit ourselves to a discussion of the interaction of an X-ray photon with an isolated atom, or rather with a single electron in a Hartree–Fock atom. Subsequent articles in this issue deal with more complicated – and interesting – forms of matter encompassing many atoms or molecules. To cite this article: J. Als-Nielsen, C. R. Physique 9 (2008).  相似文献   

11.
Ultrafast magnetic processes are of great scientific interest but also form the basis of high density magnetic recording applications. We demonstrate the uniqueness of time resolved, high resolution magnetic X-ray microscopy, and show that the motion of a magnetic vortex core can be imaged. The vortex core direction is hidden to most experimental techniques, but has a decisive influence on the dynamics of the magnetic structure.We imaged the switching of a ferromagnetic nanostructure by a spin polarized current pulse using time resolved X-ray microscopy. As opposed to the common uniform switching process due to Néel and Stoner–Wohlfarth, the magnetization in spin injection devices does not switch uniformly, but involves the motion of a magnetic vortex. To cite this article: Y. Acremann, C. R. Physique 9 (2008).  相似文献   

12.
Resonant X-ray scattering is a method which combines high- resolution X-ray elastic diffraction and atomic core-hole spectroscopy for investigating electronic and magnetic long-range ordered structures in condensed matter. During recent years the development of theoretical models to describe resonant X-ray scattering amplitudes and the evolution of experimental techniques, which include the control and analysis of linear photon polarization and the introduction of extreme environment conditions such as low temperatures, high magnetic field and high pressures, have opened a new field of investigation in the domain of strongly correlated electron systems. To cite this article: L. Paolasini, F. de Bergevin, C. R. Physique 9 (2008).  相似文献   

13.
An electrification scheme, consistent with the mixed-phase microphysical parameterization, has been developed for the French cloud resolving model MésoNH. There are four successive steps: (i) charge separation is assumed to result only from non-inductive processes; (ii) electrical charges carried by the different hydrometeor species are transported along the air flow and redistributed according to the microphysical processes; (iii) the electric field is deduced from the integration of a modified Poisson equation; (iv) a lightning parameterization simulates triggering, propagation and pseudo-fractal branching of the flashes and associated charge neutralization. Two numerical experiments are conducted firstly to evaluate the performances of the lightning scheme, secondly to test the simulated evolution of the electrical characteristics of a idealized supercellular storm. To cite this article: G. Molinié et al., C. R. Physique 3 (2002) 1305–1324.  相似文献   

14.
We show that the supersymmetry transformations for type II string theories on six-manifolds can be written as differential conditions on a pair of pure spinors, the exponentiated Kähler form eiJ and the holomorphic form Ω. The equations are explicitly symmetric under exchange of the two pure spinors and a choice of even or odd-rank RR field. This is mirror symmetry for manifolds with torsion. Moreover, RR fluxes affect only one of the two equations: eiJ is closed under the action of the twisted exterior derivative in IIA theory, and similarly Ω is closed in IIB. This means that supersymmetric SU(3)-structure manifolds are always complex in IIB while they are twisted symplectic in IIA. Modulo a different action of the B-field, these are all generalized Calabi–Yau manifolds, as defined by Hitchin. To cite this article: M. Graña et al., C. R. Physique 5 (2004).

Résumé

On montre que les transformations de supersymétrie pour les théories des cordes de type II peuvent être traduites dans des équations différentielles pour une paire de spineurs purs, l'exponentiel de la forme de Kähler eiJ et la forme holomorphe Ω. Ces équations sont symétriques sous l'échange des deux spineurs purs et des formes de RR de rang pair ou impair. Cette propriété est la symétrie miroir pour les variétés avec torsion. On voit aussi que les fluxes de RR entrent seulement dans une des deux équations : eiJ est fermé sous l'action de la dérivée extérieure « twisted » dans la corde de type IIA, et de la même manière Ω est fermé en type IIB. Cela implique que les variétés supersymétriques de structure SU(3) sont toujours complexes en type IIB ou bien symplectiques « twisted » en IIA. Ces variétés sont donc des variétés des Calabi–Yau généralisées selon la définition de Hitchin, mais avec une action du champ B différente. Pour citer cet article : M. Graña et al., C. R. Physique 5 (2004).  相似文献   

15.
The use of numerical models has greatly increased our understanding of the electrical and microphysical process within electrified clouds. We use the University of Washington, 1.5-dimensional thunderstorm model to examine the effects of including a runaway electron based lightning initiation mechanism. We find that this mechanism can significantly alter the electrification history of modeled storms and produce vertical electric field profiles that are very similar to those of observed storms. To cite this article: R. Solomon et al., C. R. Physique 3 (2002) 1325–1333.  相似文献   

16.
Systematic expansions, in powers ofB –1, for the free energy and the density of states, are derived for a two-dimensional degenerate electron gas in the presence of a strong magnetic field and an arbitrary potential. They are then applied to a system involving random impurities. Landau levels are shown to be broadened, with level widths related to the impurity concentration and potential. We show that level broadenings, induced by long range electron-impurity ineractions, do not depend on the magnetic field in the strong field limit, confirming the existing theories. But broadened Landau levels can have a large variety of shapes as one changes the impurity potential, distribution and concentration. Our theory, with a Gaussian potential, leads to a good agreement with the recent experiment on the de Haas-van Alphen effect in Br2-graphite intercalation compounds  相似文献   

17.
We have investigated theoretically the Nernst effect in unconventional (d-wave) charge and spin density waves (UDW). In the presence of magnetic field, Landau levels are formed, and the gapless behaviour of the low energy excitations change into gapped behaviour. When additional electric field is applied, the quasiparticles drift with a velocity of E × B/B2, and carry entropy. From this, the Nernst coefficient can be calculated using the Kelvin relation. The present results account very nicely for the measured Nernst signal in the pseudogap phase of high Tc superconductor La2−xSrxCuO4 and Bi2Sr2−yLayCuO6. This indicates that the large Nernst effect is a clear signiture of UDW.  相似文献   

18.
We critically review the recent developments in the field of semi-empirical interatomic potentials for molecular dynamics simulations, with particular emphasis on the requirements and criteria associated with the simulations of radiation damage effects in metals. We address a range of issues including the suitability of potentials for large-scale simulations, the role of electronic excitations and electron energy losses, and the part played by the dynamics of internal degrees of freedom of atoms, for example magnetic excitations. To cite this article: K. Nordlund, S.L. Dudarev, C. R. Physique 9 (2008).  相似文献   

19.
The main outstanding issues regarding modeling He diffusion and defect accumulation in α-iron are reviewed. During recent years, first principles calculations have provided a better understanding of defect stability and migration properties in pure α-iron, and accurate values of energetics of He migration and He-vacancy interactions. Such information has been used by several authors to study damage evolution under different irradiation conditions using both kinetic Monte Carlo and rate theory models. In this article a review of the main results is provided, in particular for He desorption. The influence of impurities such as carbon is discussed as well as the main challenges ahead for modeling. To cite this article: M.J. Caturla et al., C. R. Physique 9 (2008).  相似文献   

20.
In this contribution, we present a numerical study of quantum transport in carbon nanotubes based materials. After a brief presentation of the computational approach used to investigate the transport coefficient (Kubo method), the scaling properties of quantum conductance in ballistic regime as well as in the diffusive regimes are illustrated. The impact of elastic (impurities) and dynamical disorders (phonon vibrations) are analyzed separately, with the extraction of main transport length scales (mean free path and localization length), as well as the temperature dependence of the nanotube resistance. The results are found in very good agreement with both analytical results and experimental data, demonstrating the predictability efficiency of our computational strategy. To cite this article: H. Ishii et al., C. R. Physique 10 (2009).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号