首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whiskers, designated as W, were prepared from hemp fibers. Both fibers and whiskers were characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis. Scanning electron microscopy and transmission electron microscopy were used to evaluate the dimensions of the fibers and whiskers, respectively. By incorporating different weight fraction of the fibers and whiskers into soy protein isolate, we prepared two different composites designated as SC and SC-W, respectively. Thiodiglycol was used as a plasticizer for the preparation of composites. The SC and SC-W composites were characterized and compared in terms of mechanical properties, volume fraction of porosity, and water uptake. The results indicated that there was not much significant difference in the properties of the composites. In fact, mechanical properties of fiber-reinforced composites were higher than whisker-reinforced composites at optimum weight fractions. This study can give us the idea about the judicious use of fibers or whiskers as reinforcement materials.  相似文献   

2.
In the present paper, starch-based biocomposites have been prepared by reinforcing corn starch matrix with mercerized Abelmoschus esculentus lignocellulosic fibers. The effect of fiber content on mechanical properties of composite was investigated and found that tensile strength, compressive strength, and flexural strength at optimum fiber content were 69.1%, 93.7% and 105.1% increased to that of cross-linked corn starch matrix, respectively. The corn starch matrix and its composites were characterized by Fourier transform infrared spectroscopy (FT-IR), Scanning electron microscopy (SEM), X-ray diffraction (XRD) and thermogravimetric (TGA) analysis. The fiber reinforced composites were found to be highly thermal stable as compared to natural corn starch and cross-linked corn starch matrix. Further, water uptake and biodegradation studies of matrix and composites have also been studied.  相似文献   

3.
Selecting the best brake friction composite composition amongst a set of natural fibres reinforced composites using hybrid optimization method - ELECTRE (elimination and choice translating priority) II - entropy is discussed in this article. Three sets of natural fibres containing different amounts of banana, hemp, and pineapple reinforced brake friction composites were tested according to IS 2742 (part-4) regulations on a chase friction testing machine. The experimental results have been discussed in terms of seven performance defining attributes such as coefficient of friction, fade, wear, friction stability coefficient, friction recovery, friction fluctuations, and friction variability coefficient. The composite containing 5 wt% pineapple fiber exhibit the highest coefficient of friction, whereas wear performance and friction stability remain highest for 5 wt% hemp fiber based composites. The recovery performance remains highest for the composite containing 15 wt% banana fiber, while fade, friction variability, and fluctuations remain lowest for 10 wt% banana fiber reinforced composites. The tribological results indicate that the inclusion of disparate natural fibers in varying amounts may differently affect the tribological performances and therefore to choose the best brake friction composite satisfying the maximum beneficial criteria hybrid ELECTRE II- entropy optimization technique is used. Brake friction composite containing ~10 wt% banana fibers was ranked first, in meeting the desired performance tribological properties. A comparison of this optimization approach with other multi-criteria decision-making techniques is also made for validating the performance ranking of these composites.  相似文献   

4.
纤维素超细纤维增强大豆分离蛋白透光复合膜性能研究   总被引:6,自引:1,他引:5  
以醋酸纤维素为原料, 由静电纺丝方法得到平均直径为430 nm的纤维素超细纤维, 将该纤维与大豆分离蛋白复合制备了一种新型的超细纤维增强透光复合膜. 采用扫描电镜、拉伸、三点弯曲和透光率试验等对其结构、力学和透光性进行了分析和表征. 结果表明: 超细纤维与大豆分离蛋白基体具有良好的界面相互作用; 超细纤维对复合材料起到了增强增韧的效果. 而且, 复合膜具有良好的透光率. 即使超细纤维质量分数达到13%, 该膜在700 nm波长处的透光率仍然可以达到77%.  相似文献   

5.
Whiskers were prepared from ramie fibers and were characterized using atomic force microscopy to evaluate their dimensions. SPI/whiskers composites (SW) were prepared by incorporating different weight contents (wt.%) of the whiskers into soy protein isolate (SPI). Thiodiglycol was used as a plasticizer for the preparation of SW composites. The SW composites were arylated with 2,2-diphenyl-2-hydroxyethanoic acid through the process of “dip-coating” and coded as SW-B. In this paper, the characterization of SW and SW-B composites, such as their morphologies, mechanical properties, thermal stability, optical transmittance, and water uptake, are discussed. The results indicated substantial improvement in the water resistance, thermal stability, and the modulus of the SW-B composites after arylation due to the formation of hydrophobic diphenylhydroxymethane (DPHM) microparticles on the surface. This work provides a novel method to increase the water resistance of protein based composites.  相似文献   

6.
A hybrid protein fiber from different protein sources such as casein and soybean using wet-spinning technique was prepared. The casein/soybean hybrid fibers were synthesized at different weight ratios such as 100/0 (casein), 75/25, 50/50, 25/75, and 0/100 (soy) and characterized. Electron microscopic analysis confirmed the growth of pure and hybrid fibers and shows an increased surface roughness as the soy concentration increases in the hybrid fibers. Infrared spectra did not exhibit any significant changes in the functional groups between pure and hybrid fibers. X-ray diffraction pattern indicates slight increase in the diffraction peak values of hybrid fibers compared with the neat fibers. Thermal analyses show a moderate increase in the thermal stability of hybrid fibers when compared with the pure fibers. These results implicitly indicate that the casein and soy proteins are homogeneous in the hybrid fiber form. It has been demonstrated that the hybrid fiber with ≥50 wt.% casein content exhibits better morphology and increased thermal stability, which has scope for application in technical and medical industries.  相似文献   

7.
The aim of the present study was to investigate and compare the mechanical properties of untreated and chemically modified Borassus fiber–reinforced epoxy composites. Composites were prepared by the hand lay-up process by reinforcing Borassus fibers with epoxy matrix. To improve the fiber-matrix adhesion properties, alkali (NaOH) and alkali combined with silane (3-aminopropyltriethoxysilane) treatment of the fiber surface was carried out. Examinations through Fourier transform-infrared spectroscopy and scanning electron microscopy (SEM) were conducted to investigate the structural and physical properties of the Borassus fibers. Tensile properties such as modulus and strength of the composites made with chemically modified and untreated Borassus fibers were studied using a universal testing machine. Based on the experimental results, it was found that the tensile properties of the Borassus-reinforced epoxy composites were significantly improved as compared with the neat epoxy. It was also found that the fiber treated with a combination of alkali and silane exhibited superior mechanical properties to alkali-treated and untreated fiber composites. The nature of the fiber/matrix interface was examined through SEM of cryo-fractured samples. Chemical resistance of composites was also found to be improved with chemically modified fiber composites.  相似文献   

8.
采用溶胶-凝胶法, 在侧链带有羧基的线性不饱和聚酯中加入正硅酸乙酯(TEOS), 使TEOS在酸性条件下发生水解反应, 原位合成纳米SiO2增强阴离子型聚酯乳液(SEAPE). 利用傅里叶变换红外光谱(FTIR)仪、 激光粒度分析仪和冷冻扫描电子显微镜(Cryo-SEM)对SEAPE进行分析与表征. 将SEAPE与聚乙二醇单油酸酯润滑剂、 非离子型表面活性剂FC-4430及抗氧剂1010进行复配, 原位制备纳米SiO2增强阴离子型聚酯乳液上浆剂(SEAPEs), 用扫描电子显微镜(SEM)、 视频动态接触角测量仪、 X射线能谱(EDS)仪和纤维强力仪对SEAPEs上浆后碳纤维的表面形貌、 表面能、 碳纤维(CF)表面元素及碳纤维增强不饱和聚酯(UPR)复合材料(CF/UPR)的层间剪切强度(ILSS)进行测试与表征. 结果表明, 当TEOS添加质量分数为5%时, SEAPEs上浆后的碳纤维有效增强了其与UPR的结合强度, CF/UPR复合材料的ILSS达到40.03 MPa, 与市售环氧树脂型上浆剂上浆后碳纤维增强UPR复合材料相比, ILSS提高90.1%. SEAPEs中原位生成的纳米SiO2分散均匀, 乳液储存稳定, 上浆后SiO2均匀吸附在碳纤维表面, 增加碳纤维表面能, 改善碳纤维与树脂间的浸润性, 可有效提高碳纤维增强不饱和聚酯树脂复合材料的ILSS.  相似文献   

9.
Ultra high molecular weight polyethylene (UHMW-PE) fibers were used in a chopped form and at different concentrations as a reinforcing material in ethylene–propylene–diene terpolymers (EPDM). The effect of radiation dose and fiber concentration on the mechanical properties of the vulcanized rubber composites obtained was measured. It was found that γ-irradiation improves the interfacial adhesion between UHMW-PE fiber (Spectra 1000) and EPDM matrix which was detected by scanning electron microscopy (SEM). In addition, the Young modulus of the composites increases as the irradiation dose increases. Increasing the concentration of the fibers up to 40 phr leads to an enhancement in mechanical properties and swelling resistance of obtained composites, especially in the absence of carbon black. The absolute value of the modulus increased by a factor of at least two with the addition of carbon black. Moreover the tear strength of reinforced and filled EPDM was improved with respect to reinforced rubber. © 1997 John Wiley & Sons, Ltd.  相似文献   

10.
Summary: This work intends to promote the use of natural fibers by comparing the behavior of isophthalic polyester matrix composites reinforced with unidirectional curaua fibers with that of unidirectional glass fiber composites. The composites were produced varying the reinforcement angle (0°, 15°, 30°, 45°, 60°, 75° and 90°) with the aim of studying the fiber orientation effect on composite strength. Composites were also made varying the fiber volume fraction (10%, 20%, 30%, 40% and 50%). The efficiency of an alkaline (5% NaOH) surface treatment of the curaua fiber was also evaluated. The unidirectional composites were characterized using tensile, flexural and short beam tests as per ASTM standards. The properties of a lamina reinforced with either glass or curaua fibers were also studied using theoretical micromechanical approach available in commercial software. The curaua fiber alkaline treatment produced higher tensile strength results compared with untreated fibers. The increase in reinforcement angle significantly decreased strength and modulus of the composites, as expected, and the glass fiber composites showed a more pronounced dependence with fiber orientation. Although the glass fiber laminas showed the best mechanical performance, the results obtained with the curaua fibers were considered similar for angles greater than 45°.  相似文献   

11.
Napier grass fiber strands were used as reinforcement to obtain composites with epoxy resin as matrix. To improve the surface, these fiber strands were treated with alkali solution. The composites were prepared by means of hand lay-up molding, then the effects of Napier grass fiber strand loading on mechanical properties such as tensile, flexural and impact, interfacial bonding, and chemical resistance were investigated. The composite with 20 wt.% Napier grass fiber strands gives excellent mechanical properties and chemical resistance, showing that it has the best bonding and adhesion of the composites. SEM micrographs of fractured and worn surfaces clearly demonstrate the interfacial adhesion between fiber and matrix. Alkali-treated Napier grass fiber strand–reinforced composites have better resistance to water and chemicals than the untreated fiber strand composites.  相似文献   

12.
In this work, oil palm empty fruit bunch (EFB) and jute fibers were treated by 2-hydroxy ethyl acrylate (2-HEA) to enhance interaction with the epoxy matrix in hybrid composites. Hybrid composites were fabricated by the hand lay-up technique by reinforcing chemical-treated oil palm EFB and jute fibers in an epoxy matrix. Physical (density, void content, water absorption, and thickness swelling) and chemical resistance properties of treated hybrid composites were characterized. Chemically treated oil palm EFB/jute fiber reinforced hybrid composites display better dimensional stability (water absorption and thickness swelling) and chemical resistance as compared to untreated hybrid composites.  相似文献   

13.
Three kinds of poly(urea‐formaldehyde) (PUF) microcapsules filled with epoxy resins (MCEs) were applied to bismaleimide (BMI)/O,O′‐diallyl bisphenol A (BA) system to develop novel fiber reinforced BMI/BA/MECs composites. The effects of MCEs on the mechanical properties, the hot‐wet resistance, and the dynamic mechanical properties of fiber reinforced BMI/BA composites were investigated. The morphologies of fiber reinforced BMI/BA/MCEs composites were characterized by scanning electron microscope (SEM) and optical microscope (OM). Results indicate that the appropriate contents of MCEs can significantly improve the mechanical properties and the hot‐wet resistance of fiber reinforced BMI/BA composites. In this study, MCEs may decrease the storage modulus of fiber reinforced BMI/BA composite but they have no significant influence on the glass transition temperature (Tg) of the composite. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
In this work, ozone modification method and air‐oxidationwere used for the surface treatment of polyacrylonitrile(PAN)‐based carbon fiber. The surface characteristics of carbon fibers were characterized by XPS. The interfacial properties of carbon fiber‐reinforced (polyetheretherketone) PEEK (CF/PEEK) composites were investigated by means of the single fiber pull‐out tests. As a result, it was found that IFSS (interfacial shear strength) values of the composites with ozone‐treated carbon fiber are increased by 60% compared to that without treatment. XPS results show that ozone treatment increases the amount of carboxyl groups on carbon fiber surface, thus the interfacial adhesion between carbon fiber and PEEK matrix is effectively promoted. The effect of surface treatment of carbon fibers on the tribological properties of CF/PEEKcomposites was comparativelyinvestigated. Experimental results revealed that surface treatment can effectively improve the interfacial adhesion between carbon fiber and PEEK matrix. Thus the wear resistance was significantly improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The effects of surface treatment using potassium permanganate on ultra-high molecular weight polyethylene (UHMWPE) fibers reinforced natural rubber (NR) composites were investigated. The results showed the surface roughness and the oxygen-containing groups on the surface of the modified fibers were effectively increased. The NR matrix composites were prepared with as-received and modified UHMWPE fibers added 0–6 wt%. The treated fibers increased the modulus and tensile stress at a given elongation. The tear strength increased with increasing fiber mass fraction, attained maximum values at 4 wt%. The hardness of composites exhibited continuous increase with increasing the fiber content. The dynamic mechanical tests showed that the storage modulus and the tangent of the loss angle were decreased in the modified UHMWPE fibers/NR composites. Several micro-fibrillations between the treated fiber and NR matrix were observed, which meant the interfacial adhesion strength was improved.  相似文献   

16.
In this study, a composite of thermoplastic polyurethane reinforced with short Kenaf fiber (Hibiscus cannabinus) was prepared via melt-blending method using Haake Polydrive R600 internal mixer. Effect of various sodium hydroxide NaOH concentrations, namely 2, 4 and 6% on tensile, flexural and impact strength was studied. Mean values were determined for each composite according to ASTM standards. Tensile, flexural and impact strength negatively correlates with higher concentrations of NaOH. Scanning electron microscope (SEM) was used to examine the surface of both treated and untreated fibers as well as fracture surface of tensile specimens. Morphology of treated and untreated fibers showed a rougher surface of treated fibers. It also showed that some of high concentrations of NaOH treated fibers have NaOH residues on their surface. This was confirmed by energy dispersive X-ray point shooting performed on the same SEM machine. Morphology of surface of fracture indicated that untreated composite had a better adhesion. Treated and untreated fibers as well as composites were characterized using Fourier transform infrared spectroscopy (FTIR). FTIR of treated fibers showed that NaOH treatment resulted in removal of hemicelluloses and lignin. FTIR also showed that untreated composite has more H-bonding than all treated composites. Thermal characteristic studies using thermogravimetry analysis and differential scanning calorimetry showed that untreated composite was more thermally stable than treated composites.  相似文献   

17.
Mechanical, dynamic mechanical, and rheological behaviors of a short p‐aramid fiber reinforced thermoplastic polyurethane (TPU) have been studied in the range of 0–30 wt% of fibers. The tensile strength of the composite is improved slightly at higher fiber content with a minimum at around 10 wt% of fibers. The addition of fibers markedly reduces elongation at break and entails a steady increase in the elastic modulus, but decreases the wear resistance of the matrix. Storage modulus (E′) is increased and the shapes of loss tangent (tan δ) peaks point to a possible fiber–matrix interaction. Rheological studies show a power law behavior for all composites and increased viscosity with fiber loading. Study of the tensile and cryogenic fracture surfaces by scanning electron microscopy (SEM) indicates good correlation between the modes of failure and strength of the composites. The micrographs reveal good interfacial adhesion and extensive peeling and fibrillation of the fibers in the compounded and fractured composites. Theoretical models have been used to fit the experimental modulus data. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
Poly(methyl methacrylate)/soy protein(PMMA/SP) composites were prepared by emulsion polymerization method using potassium persulphate(KPS) as the radical initiator.The interaction of soy protein with PMMA was evidenced by Fourier transformed infrared(FT1R) spectroscopy.The structure of PMMA/SP composites was investigated by X-ray diffraction(XRD) study and scanning electron microscopy(SEM).The thermal properties of soy protein and PMMA/SP composites were compared with soy protein and virgin PMMA sample.PMMA/SP composites were found to be flame retardant materials from the measurement of limiting oxygen index(LOI) of samples.The oxygen permeability of PMMA/SP composites was substantially decreased as compared to virgin PMMA.  相似文献   

19.
Thermoplastic composites reinforced with natural fibers have attracted the attention of many researchers, not only for environmental concerns, but also for economic reasons, recyclability, ease of processing, etc. One promising application is in the automotive industry due to their low cost and weight. This industry is increasingly pressured to produce vehicles that consume less fuel and are less polluting. Therefore, plastics reinforced with fibers are required to produce lighter parts to replace the much more abrasive glass fiber and mineral filled composites. One of the most widely used polymers in the automotive sector for manufacturing interior and exterior vehicle components is talc filled EPDM (ethylene-propylene-diene monomer) toughened polypropylene (PP). In this context, the aim of this study was to assess mechanical and thermal properties of bamboo fiber reinforced recycled talc filled PP/EPDM composites compatibilized with maleic anhydride grafted polypropylene (PP-g-MAH). Composites were prepared, according to a 22 factorial design with center point, in a Haake twin screw extruder with subsequent injection molding. Injected specimens were subjected to tensile, flexural, impact and fatigue testing. Morphological analyses were performed by scanning electron microscopy (SEM), and thermal analyses by thermogravimetry (TGA) and differential scanning calorimetry (DSC). Addition of bamboo fiber significantly increased tensile and bending strength, modulus and fatigue life, and decreased elongation at break and impact strength. On the other hand, addition of the compatibilizer had a positive effect only on tensile and flexural strength, and fatigue life whereas the effect was negative on elongation at break and impact strength. The addition of fiber and compatibilizer did not appreciably affect the matrix melting temperature, but slightly increased crystallization temperature and in some cases the degree of crystallinity.  相似文献   

20.
Polyacrylonitrile (PAN)‐based carbon fibers were electrochemically oxidized in aqueous ammonium bicarbonate with increasing current density. The electrochemical treatment led to significant changes of surface physical properties and chemical structures. The oxidized fibers showed much cleaner surfaces and increased levels of oxygen functionalities. However, it was found that there was no correlation between surface roughness and the fiber/resin bond strength, i.e. mechanical interlocking did not play a major role in fiber/resin adhesion. Increases in surface chemical functionality resulted in improved fiber/resin bonding and increased interlaminar shear strength (ILSS) of carbon fiber reinforced epoxy composites. The relationship between fiber surface functionality and the hydrothermal aging behavior of carbon fiber/epoxy composites was investigated. The existence of free volume resulted from poor wetting of carbon fibers by the epoxy matrix and the interfacial chemical structure were the governing factors in the moisture absorption process of carbon fiber/epoxy composites. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号