首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Differential transient absorption spectra have been studied for planar densely packed Ag/Na3AlF6 nanostructures under ultrashort laser pulse excitation. The nanostructures were fabricated by sequential thermal evaporation of cryolite (Na3AlF6) and silver in vacuo onto glass and quartz substrates. A nonmonotonic variation in relaxation times of induced changes in a surface plasmon resonance band was observed with an increase in the metal surface density that resulted in nanoparticle size growth and structural modification of the densely packed layer. The tendency of the relaxation times to vary nonmonotonically is explained by both features of intrinsic size effects and electron-tunneling processes in plasmonic densely packed nanostructures of various topologies.  相似文献   

2.
It is shown that the ferromagnetic resonance spectrum in (Bi,Tm)3(Fe,Ga)5O12 films grown in Gd3Ga5O12(210) substrates has a single peak. The azimuthal and polar dependences of the resonance field possess 180° symmetry. The angular dependences of the ferromagnetic resonance line width and intensity are studied.  相似文献   

3.
The monolayer Al2O3:Ag thin films were prepared by magnetron sputtering. The microstructure and optical properties of thin film after annealing at 700 °C in air were characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and spectrophotometer. It revealed that the particle shape, size, and distribution across the film were greatly changed before and after annealing. The surface plasmon resonance absorption and thermal stability of the film were found to be strongly dependent on the film thickness, which was believed to be associated with the evolution process of particle diffusion, agglomeration, and evaporation during annealing at high temperature. When the film thickness was smaller than 90 nm, the film SPR absorption can be attenuated until extinct with increasing annealing time due to the evaporation of Ag particles. While the film thickness was larger than 120 nm, the absorption can keep constant even after annealing for 64 h due to the agglomeration of Ag particles. On the base of film thickness results, the multilayer Al2O3:Ag solar selective thin films were prepared and the thermal stability test illustrated that the solar selectivity of multilayer films with absorbing layer thickness larger than 120 nm did not degrade after annealing at 500 °C for 70 h in air. It can be concluded that film thickness is an important factor to control the thermal stability of Al2O3:Ag thin films as high-temperature solar selective absorbers.  相似文献   

4.
An Ag2S/Ag heteronanostructure has been prepared for the first time by hydrochemical deposition. The “acanthite α-Ag2S–argentite β-Ag2S” phase transformation has been studied in situ by high-temperature X-ray diffraction and transmission electron microscopy. The crystal structure of argentite has been revealed. It has been found that the concentration of vacant sites in the metal sublattice of argentite exceeds 92%. The reversible acanthite–argentite transformation in the Ag2S/Ag heteronanostructure at the application of the external bias voltage is considered.  相似文献   

5.
The low energy deposition of silver cluster cations with 561 (±5) atoms on a cold fullerene covered gold surface has been studied both by scanning tunneling microscopy and molecular dynamics simulation. The special properties of the C60/Au(111) surface result in a noticeable fixation of the clusters without a significant change of the cluster shape. Upon heating to room temperature we observe a flattening or shrinking of the cluster samples due to thermal activation. Similar changes were observed also for mass selected Ag clusters with other sizes. For comparison we also studied Ag islands of similar size, grown by low temperature deposition of Ag atoms and subsequent annealing. A completely different behavior is observed with much broader size distributions and a qualitatively different response to annealing.  相似文献   

6.
The nonlinear microwave absorption in the (CH3NH3)2CuBr4 antiferromagnetic crystal is investigated experimentally. The temperature and angular dependences of the parameters of nonlinear resonance and the dependences of these parameters on the microwave pump power are analyzed. It is found that the nonlinear properties deteriorate with decreasing temperature and the linear and nonlinear contributions are competitive in character.  相似文献   

7.
The optical properties of mixed (Ni0.5Ag0.5)n and Pt/Ag clusters are investigated in the size range 2-5 nm. Low Energy Ion Spectroscopy (LEIS) experiments show that the cluster surface is entirely covered by silver atoms for the two systems. The optical spectra of Ni/Ag clusters exhibit a large Surface Plasmon Resonance (SPR), damped and widened when the cluster size decreases, in agreement with a classical model assuming a core-shell geometry and including the reduction of the conduction electron mean-free path in the silver shell. For Pt/Ag clusters, no SPR emerges in the size range 2-5 nm, although it is predicted within a classical model, a pronounced SPR appearing only for clusters larger than 10 nm in diameter.  相似文献   

8.
The controllable synthesis and characterization of novel thermally stable silver-based particles are described. The experimental approach involves the design of thermally stable nanostructures by the deposition of an interfacial thick, active titania layer between the primary substrate (SiO2 particles) and the metal nanoparticles (Ag NPs), as well as the doping of Ag nanoparticles with an organic molecule (Congo Red, CR). The nanostructured particles were composed of a 330-nm silica core capped by a granular titania layer (10 to 13 nm in thickness), along with monodisperse 5 to 30 nm CR-Ag NPs deposited on top. The titania-coated support (SiO2/TiO2 particles) was shown to be chemically and thermally stable and promoted the nucleation and anchoring of CR-Ag NPs, which prevented the sintering of CR-Ag NPs when the structure was exposed to high temperatures. The thermal stability of the silver composites was examined by scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HRTEM). Larger than 10 nm CR-Ag NPs were thermally stable up to 300 °C. Such temperature was high enough to destabilize the CR-Ag NPs due to the melting point of the CR. On the other hand, smaller than 10 nm Ag NPs were stable at temperatures up to 500 °C because of the strong metal-metal oxide binding energy. Energy dispersion X-ray spectroscopy (EDS) was carried out to qualitatively analyze the chemical stability of the structure at different temperatures which confirmed the stability of the structure and the existence of silver NPs at temperatures up to 500 °C.  相似文献   

9.
The magnetic environments of Cu2+-doped potassium hydrogen citrate (C6H7KO7) complex have been identified by electron paramagnetic resonance (EPR) technique. The angular variation of the EPR spectra has shown that three different Cu2+ complexes are located in different chemical environments, and each environment contains one magnetic Cu2+ site occupying substantial positions in the lattice and showing a very high angular dependence. The principal g and the hyperfine structure parameter (A) values of three sets of Cu2+ complex groups are determined. The covalency parameter, mixing coefficients and Fermi-contact term of the complex are obtained, and the ground-state wave function of the Cu2+ ion in the lattice has been constructed.  相似文献   

10.
The electron paramagnetic resonance (EPR) of Yb3+ ions in a KY(WO4)2 single crystal was investigated at T=4.2 K and fixed frequency of 9.38 GHz. The resonance absorption observed on the lowest Kramers doublet represents the complex superposition of three spectra, corresponding to the ytterbium isotopes with different nuclear moments. The EPR spectrum is characterized by a strong anisotropy of the g-factors. The temperature dependence of the g-factors is shown to be caused by the strong spin-orbital and orbital-lattice coupling. The resonance lines broaden with increasing temperature due to the short spin-lattice relaxation times.  相似文献   

11.
The photochemistry of SO2 on thin epitaxial Ag films (5–60 nm) deposited on Si(100) has been studied using laser light with the wavelengths of 266, 355, and 532 nm. SO2 desorbs with cross sections of 1.7×10-19,1.7×10-20 and 2.9×10-21 cm2, respectively. The average translation energy, 〈Etrans/2k〉, is 440 K for 266 and 355 nm light, and 270 K for 532 nm light. Cross sections for a 60 nm thick Ag film are practically identical to the ones for Ag(111) as the substrate. An increase by a factor of ∼3.5 is observed when the film thickness is reduced to 5 nm for 266 and 355 nm light. No significant change is observed for 532 nm excitation. The film thickness has no significant influence on the translational energy of the photodesorbed molecules. The data are discussed in connection with the change of absorptivity of the metal film–semiconductor system. A model is put forward which takes into account the light absorption in the Si substrate and the reduced relaxation of excited electrons in Si. Modelling indicates that electrons excited in the Si substrate with energies and parallel momenta not allowed in Ag contribute to the surface chemistry after crossing the gap in the projected band structure of Ag(111). PACS 82.45.MP; 73.63.-b; 82.50.Bc  相似文献   

12.
表面等离子体共振是一种免标记的传感技术,当介质周围的介电常数发生改变时,则SPR谐振光谱特性也会随之改变.因此表面等离子体共振传感技术已广泛应用于生物化学和环境监测等领域.由于二氧化钛(TiO2)覆盖层不仅可以保护金属层,还能调谐SPR谐振的光谱强度和谐振波长于近红外波段,应用于1550 nm的光纤传感,其氧化还原反应...  相似文献   

13.
The behavior of de Haas-van Alphen oscillations in the quasi-2D organic metal (ET)8[Hg4Cl12(C6H5Cl)2] was studied in detail. The section of the Fermi surface of this metal is a two-dimensional network of magnetic breakdown orbits. Only two frequencies, which corresponded to allowed closed orbits, FA and FMB, were detected. This is in agreement with the earlier studies of Shubnikov-de Haas oscillations in this metal. The reason for the absence of other allowed frequencies remains unclear. The angular dependences of the amplitudes of FA and FMB oscillations contain a series of “spin zeros.” An analysis of their positions led us to suggest that many-particle interactions were weakened in (ET)8[Hg4Cl12(C6H5Cl)2].  相似文献   

14.
The decay path of an Ag8(O2)- cluster photoexcited by a 3.1 eV photon is elucidated using time-resolved photoelectron spectroscopy. Photoabsorption results in the formation of an excited state giving rise to a peak in the photoelectron spectra with well-resolved vibrational finestructure. With a lifetime of about 100 fs this bound state decays into an anti-bonding state which dissociates into O2 and Ag8- on a timescale of 10 ps. In the photoelectron spectra, this corresponds to a broad maximum shifting gradually towards higher binding energy while the O2 and Ag8- separate. Finally, the spectrum of bare Ag8- appears. This process is unique to small clusters, because on metal surfaces excited state lifetimes are too short to allow for direct dissociation.  相似文献   

15.
Chien FC  Chen SJ 《Optics letters》2006,31(2):187-189
A coupled waveguide-surface plasmon resonance (CWSPR) biosensor based on the Kretschmann configuration is developed. The CWSPR couples the surface plasmon resonance (SPR) mode and the waveguide mode and generates two sharp resonance dips in the reflectivity spectrum. The proposed biosensor not only retains the same sensing sensitivity as that of a conventional SPR device but also yields sharper dips in the reflectivity spectrum and therefore provides an improved measurement precision. The two reflectivity spectrum dips enable the refractive indices and thicknesses of both the self-assembled monolayer and a layer of human serum albumin absorbed dynamically on the sensing surface to be determined directly on a real-time basis. The CWSPR biosensor provides the capability to detect the biomolecular conformational changes that occur in biomolecular kinetic interactions.  相似文献   

16.
The magnetic structure of the Sr2Cu3O4Cl2 two-subsystem antiferromagnet is studied by the nuclear quadrupole resonance (NQR) method on the 63, 65Cu and 35Cl nuclei. The resonance spectrum above T N2 = 40 K is determined by the Zeeman splitting of the levels of the 63, 65Cu nuclei of the copper atoms at the Cu1 site with the first-order quadrupole perturbation. The magnetic field on the copper nuclei is equal to 93 kOe. The spectrum below n is significantly different: it includes a low-frequency part, which is associated with the ordering of the second magnetic subsystem Cu2. The splitting of the NQR lines of 35Cl is observed above and below T N2. This fact indicates the ferromagnetic ordering of the moments of the Cu1 subsystem, which are located along the c axis of the crystal, and makes it possible to determine the direction of the magnetic field on Cu1 copper as (110).  相似文献   

17.
The results of electron paramagnetic resonance (EPR) and photoluminescence studies of large NaBi(MoO4)2 crystals grown by the low-gradient Czochralski method and doped with gadolinium ions (0.1 wt %) have been presented. It has been found from the analysis of the angular dependence of EPR spectra that the gadolinium ions enter into the crystal structure in the state Gd3+ and occupy the bismuth position. The parameters of the EPR spectra of the gadolinium ions have been calculated and the analogy has been drawn based on these data between the specific features of the incorporation of gadolinium ions into the structures of double tungstates and molybdates. The observed shift of the maximum of the photoluminescence band of the NaBi(MoO4)2 crystals doped with Gd3+ ions with respect to the spectrum of the undoped crystal suggests the influence of gadolinium ions on the formation of the bottom of the conduction band caused by the states of the (MoO4)2?.  相似文献   

18.
Titanium oxides are used in a wide variety of technological applications where surface properties play a role. TiO2 surfaces, especially the (110) face of rutile, have become prototypical model systems in the surface science of metal oxides. Reduced TiO2 single crystals are easy to work with experimentally, and their surfaces have been characterized with virtually all surface-science techniques. Recently, TiO2 has also been used to refine computational ab initio approaches and to calculate properties of adsorption systems. Scanning tunneling microscopy (STM) studies have shown that the surface structure of TiO2(110) is more complex than originally anticipated. The reduction state of the sample, i.e. the number and type of bulk defects, as well as the surface treatment (annealing in vacuum vs. annealing in oxygen), can give rise to different structures, such as two different (1×2) reconstructions, a ‘rosette’ overlayer, and crystallographic shear planes. Single point defects can be identified with STM and influence the surface chemistry in a variety of ways; the adsorption of water is discussed as one example. The growth of a large number of different metal overlayers has been studied on TiO2(110). Some of these studies have been instrumental in furthering the understanding of the ‘strong metal support interaction’ between group-VIII metals and TiO2, as well as low-temperature oxidation reactions on TiO2-supported nanoscopic gold clusters. The growth morphology, interfacial oxidation/reduction reaction, thermal stability, and geometric structure of ultra-thin metal overlayers follow general trends where the most critical parameter is the reactivity of the overlayer metal towards oxygen. It has been shown recently that the technologically more relevant TiO2 anatase phase can also be made accessible to surface investigations. Received: 4 March 2002 / Accepted: 20 October 2002 / Published online: 5 February 2003 RID="*" ID="*"Corresponding author. Fax: +1-504/862-8279, E-mail: diebold@tulane.edu  相似文献   

19.
A stepwise change in the ferromagnetic resonance spectrum in a K0.4[Cr(CN)6][Mn(S)-pn](S)-pnH0.6 chiral magnet has been observed in a critical microwave magnetic field of 1.8 Oe. The threshold changes in the ferromagnetic resonance spectra are caused by Suhl instability leading to the generation of defects of the magnetic structure, chiral spin solitons. The threshold effect is not observed in the same microwave range in similar chiral crystals [Cr(CN)6][Mn(S)-pnH(H2O)](H2O) with a stronger Heisenberg exchange interaction.  相似文献   

20.
We investigate the nanostructure, surface plasmon resonance (SPR) absorption and nonlinear enhancement of Au/Ag alloyed hollow nanoshells prepared by the replacement reaction of Ag nanoparticles in a HAuCI4 aqueous solution. As the volume of HAuCl4 increases from OmL to 0.S mL, the SPR band of the Au/Ag alloyed nanoshells is tuned from 430nm to 780nm, and the third-order nonlinear optical susceptibility is enhanced nearly by an order of magnitude, which indicates a large enhancement of local field in the Au/Ag alloyed hollow nanoshells with hole defects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号