首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A specific and sensitive LC‐MS/MS assay was developed to simultaneously quantify three structurally similar flavonoid glycosides – hyperin, reynoutrin and guaijaverin – in mouse plasma. Biosamples were prepared by solid‐phase extraction. Isocratic chromatographic separation was performed on an AichromBond‐AQ C18 column (250 × 2.1 mm, 5 μm) with methanol–acetonitrile–water–formic acid (20:25:55:0.1) as the mobile phase. Detection of hyperin, reynoutrin, guaijaverin and internal standard [luteolin‐7‐Oβ‐d ‐apiofuranosyl‐(1 → 6)‐β‐d ‐glucopyranoside] was achieved by ESI‐MS/MS in the negative ion mode using m/z 463 → m/z 300, m/z 433 → m/z 300, m/z 433 → m/z 300 and m/z 579 → m/z 285 transitions, respectively. Linear concentration ranges of calibration curves were 4.0–800.0 ng/mL for hyperin and reynoutrin and 8.0–1600.0 ng/mL for guaijaverin when 100 μL of plasma was analyzed. We used this validated method to study the pharmacokinetics of hyperin, reynoutrin and guaijaverin in mice following oral and intravenous administration. All three quercetin‐3‐O‐glycosides showed poor oral absorption in mice, and the absolute bioavailability of hyperin after oral administration of 100 mg/kg was 1.2%. Pretreatment with verapamil increased the peak concentration and area under the concentration–time curve of hyperin, which were significantly higher than the control values. The half‐life of hyperin with verapamil was significantly prolonged compared with that of the control. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
A simple, practical, accurate and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and fully validated for the quantitation of guanfacine in beagle dog plasma. After protein precipitation by acetonitrile, the analytes were separated on a C18 chromatographic column by methanol and water containing 0.1% (v/v) formic acid with a gradient elution. The subsequent detection utilized a mass spectrometry under positive ion mode with multiple reaction monitoring of guanfacine and enalaprilat (internal standard) at m/z 246.2 → 159.0 and m/z 349.2 → 205.9, respectively. Good linearity was obtained over the concentration range of 0.1–20 ng/mL for guanfacine in dog plasma and the lower limit of quantification of this method was 0.1 ng/mL. The intra‐ and inter‐day precisions were <10.8% relative standard deviation with an accuracy of 92.9–108.4%. The matrix effects ranged from 89.4 to 100.7% and extraction recoveries were >90%. Stability studies showed that both analytes were stable during sample preparation and analysis. The established method was successfully applied to an in vivo pharmacokinetic study in beagle dogs after a single oral dose of 4 mg guanfacine extended‐release tablets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
A highly sensitive, accurate and robust LC‐MS/MS method was developed and validated for determination of nimorazole (NMZ) in rat plasma using metronidazole (MNZ) as internal standard (IS). The analyte and IS were extracted from plasma by precipitating protein with acetonitrile and were chromatographed using an Agilent Poroshell 120, EC‐C18 column. The mobile phase was composed of a mixture of acetonitrile and 0.1 % formic acid (85:15 v/v). The total run time was 1.5 min and injection volume was 5 μL. Multiple reaction monitoring mode using the transitions of m/z 227.1 → m/z 114.0 for MNZ and m/z 172.10 → m/z 128.1 for IS were monitored on a triple quadrupole mass spectrometer, operating in positive ion mode. The calibration curve was linear in the range of 0.25–200 ng/mL (r2 > 0.9996) and the lower limit of quantification was 0.25 ng/mL in the rat plasma samples. Recoveries of NMZ ranged between 88.05 and 95.25%. The precision (intra‐day and inter‐day) and accuracy of the quality control samples were 1.25–8.20% and ?2.50–3.10, respectively. The analyte and IS were found to be stable during all sample storage and analysis procedures. The LC‐MS/MS method described here was validated and successfully applied to pharmacokinetic study in rats. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
A rapid, simple and fully validated LC‐MS/MS method was developed and validated for the determination of megestrol acetate in human plasma using tolbutamide as an internal standard (IS) after one‐step liquid–liquid extraction with methyl‐tert‐butyl‐ether. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the transitions m/z 385.5 → 267.1 for megestrol acetate and m/z 271.4 → 155.1 for IS. Chromatographic separation was performed on a YMC Hydrosphere C18 column with an isocratic mobile phase, which consisted of 10 mm ammonium formate buffer (adjusted to pH 5.0 with formic acid)–methanol (60:40, v/v) at a flow rate of 0.4 mL/min. The achieved lower limit of quantitation (LLOQ) was 1 ng/mL (signal‐to‐noise ratio > 10) and the standard calibration curve for megestrol acetate was linear (r > 0.99) over the studied concentration range (1–2000 ng/mL). The proposed method was fully validated by determining its specificity, linearity, LLOQ, intra‐ and inter‐day precision and accuracy, recovery, matrix effect and stability. The validated LC‐MS/MS method was successfully applied for the evaluation of pharmacokinetic parameters of megestrol acetate after oral administration of a single dose 800 mg of megestrol acetate (Megace?) to five healthy Korean male volunteers under fed conditions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A specific, sensitive and stable high‐performance liquid chromatographic–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantitative determination of methyl 3‐amino‐6‐methoxythieno [2,3‐b]quinoline‐2‐carboxylate (PU‐48), a novel diuretic thienoquinolin urea transporter inhibitor in rat plasma. In this method, the chromatographic separation of PU‐48 was achieved with a reversed‐phase C18 column (100 × 2.1 mm, 3 μm) at 35°C. The mobile phase consisted of acetonitrile and water with 0.05% formic acid added with a gradient elution at flow rate of 0.3 mL/min. Samples were detected with the triple‐quadrupole tandem mass spectrometer with multiple reaction monitoring mode via electrospray ionization source in positive mode. The retention time were 6.2 min for PU‐48 and 7.2 min for megestrol acetate (internal standard, IS). The monitored ion transitions were mass‐to‐charge ratio (m/z) 289.1 → 229.2 for PU‐48 and m/z 385.3 → 267.1 for the internal standard. The calibration curve for PU‐48 was linear over the concentration range of 0.1–1000 ng/mL (r2 > 0.99), and the lower limit of quantitation was 0.1 ng/mL. The precision, accuracy and stability of the method were validated adequately. The developed and validated method was successfully applied to the pharmacokinetic study of PU‐48 in rats.  相似文献   

6.
In this study, a simple and sensitive LC/MS/MS method was developed and validated for the determination of arctigenin in rat plasma. The MS detection was performed using multiple reaction monitoring at the transitions of m/z 373.2 → 137.3 for arctigenin and m/z 187.1 → 131.0 for psoralen (internal standard) with a Turbo IonSpray electrospray in positive mode. The calibration curves fitted a good linear relationship over the concentration range of 0.2–500 ng/mL. It was found that arctigenin is not stable enough at both room temperature and ?80 °C unless mixed with methanol before storage. The validated LC/MS/MS method was successfully applied for the pharmacokinetic study of arctigenin in rats. After intravenous injection of 0.3 mg/kg arctigenin injection to rats, the maximum concentration, half‐life and area under the concentration–time curve were 323 ± 65.2 ng/mL, 0.830 ± 0.166 and 81.0 ± 22.1 h ng/mL, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
An improved LC‐MS/MS method for the quantitation of indapamide in human whole blood was developed and validated. Indapamide‐d3 was used as internal standard (IS) and liquid–liquid extraction was employed for sample preparation. LC separation was performed on Synergi Polar RP‐column (50 × 4.6 mm i.d.; 4 µm) and mobile phase composed of methanol and 5 mm aqueous ammonium acetate containing 1 mm formic acid (60:40), at flow rate of 1 mL/min. The run time was 3.0 min and the injection volume was 20 μL. Mass spectrometric detection was performed using electrospray ion source in negative ionization mode, using the transitions m/z 364.0 → m/z 188.9 and m/z 367.0 → m/z 188.9 for indapamide and IS, respectively. Calibration curve was constructed over the range 0.25–50 ng/mL. The method was precise and accurate, and provided recovery rates >80% for indapamide and IS. The method was applied to determine blood concentrations of indapamide in a bioequivalence study with two sustained release tablet formulations. The 90% confidence interval for the geometric mean ratios for maximum concentration was 95.78% and for the area under the concentration–time curve it was 97.91%. The tested indapamide tablets (Eurofarma Laboratórios S.A.) were bioequivalent to Natrilix®, according to the rate and extent of absorption. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A prodrug of tapentadol, namely tapentadol carbamate (WWJ01), was synthesized to improve the bioavailability of tapentadol owing to its extensive first‐pass metabolism. In this study, a highly rapid and sensitive UPLC‐MS/MS method was developed and validated for the simultaneous determination of tapentadol and WWJ01 in rat plasma with fluconazole as an internal standard. The analytes and internal standard were treated by methanol and then separated on a Phenomenex Kinetex® XB‐C18 (2.1 × 50 mm × 2.6 μm) column at a flow rate of 0.3 mL/min. The mobile phase comprised methanol and water with a gradient elution. The mass transition ion‐pairs were m/z 222.2 → 107.0, m/z 293.2 → 71.9 and m/z 307.1 → 220.0 for tapentadol, WWJ01 and IS, respectively. Excellent linearity was observed over the concentration range of 2–1250 ng/mL (r = 0.995) with a lower limit of quantification of 2 ng/mL for both tapentadol and WWJ01. The intra‐ and inter‐day accuracy and precision for all quality control samples were within ±15%. The validated method was accurate, rapid and reproducible, and was successfully applied to a pharmacokinetic study of tapentadol and WWJ01.  相似文献   

9.
A sensitive and rapid ultra performance liquid chromatography tandem mass spectrometry (UPLC‐MS/MS) method was developed to determine voriconazole in human plasma. Sample preparation was accomplished through a simple one‐step protein precipitation with methanol. Chromatographic separation was carried out on an Acquity UPLC BEH C18 column using an isocratic mobile phase system composed of acetonitrile and water containing 1% formic acid (45:55, v/v) at a flow rate of 0.50 mL/min. Mass spectrometric analysis was performed using a QTrap5500 mass spectrometer coupled with an electrospray ionization source in the positive ion mode. The multiple reaction monitoring transitions of m/z 351.0 → 281.5 and m/z 237.1 → 194.2 were used to quantify voriconazole and carbamazepine (internal standard), respectively. The linearity of this method was found to be within the concentration range of 2.0–1000 ng/mL with a lower limit of quantification of 2.0 ng/mL. Only 1.0 min was needed for an analytical run. This fully validated method was successfully applied to the pharmacokinetic study after oral administration of 200 mg voriconazole to 20 Chinese healthy male volunteers. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A simple and sensitive LC‐MS/MS method was developed and validated for the quantitation of pitolisant, an H3 receptor antagonist/inverse agonist. Acetonitrile protein precipitation technique was used to prepare rat blood and brain tissue homogenate samples by using aripiprazole as internal standard (IS). Chromatographic separation was performed by using Xbridge column (2.1 × 50 mm, 3.5 µm) with a gradient elution program. The mobile phase consists of ammonium formate (10 mm ) with 0.2% formic acid and acetonitrile. Multiple reaction monitoring mode was used in positive polarity with a transition of m/z 296.3 → 98.2 for the pitolisant and m/z 448.2 → 285.3 for the IS. The calibration curves were linear in the range of 0.1–100 ng/mL in both the blood and brain homogenate samples. This method was applied to quantify samples obtained from the pharmacokinetic and brain penetration studies in male wistar rats. Mean maximum concentration, area under the curve from zero to infinity and half‐life of the pitolisant were found to be 3.4 ± 1.7 ng/mL, 5 ± 4 ng h/mL and 1.9 ± 0.3 h, respectively, after a 3 mg/kg oral dose. The mean calculated concentrations in the brain were found to be 38, 60 and 52 ng/g at 0.5, 1 and 2 h, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
A simple, specific and sensitive LC‐MS/MS method was developed and validated for the determination of mesalazine in beagle dog plasma. The plasma samples were prepared by protein precipitation, then the separation of the analyte was achieved on a Waters Spherisorb C6 column (150 × 4.6 mm, 5 µm) with a mobile phase consisting of 0.2% formic acid in water–methanol (20:80, v/v). The flow rate was set at 1.0 mL/min with a split ratio of 3:2. Mass spectrometric detection was achieved by a triple‐quadrupole mass spectrometer equipped with an electrospray source interface in positive ionization mode. Quantitation was performed using selected reaction monitoring of precursor–product ion transitions at m/z 154 → m/z 108 for mesalazine and m/z 285 → m/z 193 for diazepam (internal standard). The linear calibration curve of mesalazine was obtained over the concentration range 50–30,000 ng/mL. The matrix effect of mesalazine was within ±9.8%. The intra‐ and inter‐day precisions were <7.9% and the accuracy (relative error) was within ±3.5%. The validated method was successfully applied to investigate the pharmacokinetics of mesalazine in healthy beagle dogs after rectal administration of mesalazine suppository. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A rapid, simple and sensitive UHPLC‐MS/MS method was developed and validated for the simultaneous determination of brucine, strychnine and brucine N‐oxide in rat plasma using huperzine A as an internal standard (IS) after protein precipitation with methanol. The analytes were separated on a Purospher® STAR RP18 UHPLC column (2 µm, 2.1 × 100 mm) by gradient elution using a mobile phase composed of methanol and water (containing 0.1% formic acid) at a flow rate of 0.3 mL/min. Brucine, strychnine, brucine N‐oxide and IS were detected in positive ion multiple reaction monitoring mode by means of an electrospray ionization interface (m/z 395.2 → 324.1, m/z 335.2 → 184.1, m/z 411.2 → 394.2, m/z 243.1 → 226.1). The calibration curve was linear over the range of 1–500 ng/mL for brucine and strychnine and 0.2?50 ng/mL for brucine N‐oxide. The intra‐ and inter‐day precisions of these analytes were all within 15% and the accuracy ranged from 85 to 115%. The stability experiment indicated that the plasma samples at three concentration levels were stable under different conditions. The developed method was successfully applied for the first time to pharmacokinetic studies of brucine, strychnine and brucine N‐oxide following a single oral and intravenous administration of modified total alkaloid fraction in rats. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
An accurate and sensitive LC–MS/MS method for determining thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in human plasma was developed and validated using umbelliferone as an internal standard. The analytes were extracted from plasma (100 μL) by liquid–liquid extraction with ethyl acetate and then separated on a BETASIL C18 column (4.6 × 150 mm, 5 μm) with mobile phase composed of methanol–water containing 0.1% formic acid (70:30, v/v) in isocratic mode at a flow rate of 0.5 mL/min. The detection was performed using an API triple quadrupole mass spectrometer in atmospheric pressure chemical ionization mode. The precursor‐to‐product ion transitions m/z 259.1 → 186.1 for thalidomide, m/z 273.2 → 161.3 for 5‐hydroxy thalidomide, m/z 273.2 → 146.1 for 5′‐hydroxy thalidomide and m/z 163.1 → 107.1 for umbelliferone (internal standard, IS) were used for quantification. The calibration curves were obtained in the concentrations of 10.0–2000.0 ng/mL for thalidomide, 0.2–50.0 ng/mL for 5‐hydroxy thalidomide and 1.0–200.0 ng/mL for 5′‐hydroxy thalidomide. The method was validated with respect to linear, within‐ and between‐batch precision and accuracy, extraction recovery, matrix effect and stability. Then it was successfully applied to estimate the concentration of thalidomide, 5‐hydroxy thalidomide and 5′‐hydroxy thalidomide in plasma samples collected from Crohn's disease patients after a single oral administration of thalidomide 100 mg.  相似文献   

14.
In this study, a fast UHPLC‐MS/MS method was developed and validated for the determination of a novel potent carvone Schiff base of isoniazid (CSB‐INH) in rat plasma using carbamazepine as an internal standard (IS). After a single‐step protein precipitation by acetonitrile, CSB‐INH and IS were separated on an Acquity BEHTM C18 column (50 × 2.1 mm, 1.7 µm) under an isocratic mobile phase, consisting of acetonitrile: 10 mM ammonium acetate (95:5, v/v), at a flow rate of 0.3 mL/min. Quantification was performed on a triple quadrupole tandem mass spectrometer in multiple reactions monitoring mode by using positive electrospray ionization source. The precursor to product ion transitions were set at m/z 270.08 → 79.93 for CSB‐INH and m/z 237.00 → 178.97 for IS. The proposed method was validated in compliance with US Food and Drug Administration and European Medicines Agency guidelines for bioanalytical method validation. The method was found to be linear in the range of 0.35–2500 ng/mL (r2 ≥ 0.997) with a lower limit of quantification of 0.35 ng/mL. The intra‐ and inter‐day precision values were ≤12.0% whereas accuracy values ranged from 92.3 to 108.7%. In addition, other validation results were within the acceptance criteria and the method was successfully applied in a pharmacokinetic study of CSB‐INH in rats. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A selective and sensitive liquid chromatography–tandem mass spectrometry method was developed for simultaneous determination of etoricoxib in human plasma. Chromatography was performed on an Acquity UPLC HSS T3 column (1.8 μm, 50 × 2.1 mm), with a flow rate of 0.600 mL/min, using a gradient elution with acetonitrile and water which contained 2 mm ammonium acetate as the mobile phase. Detection was carried out on Triple QuadTM 5500 mass spectrometer under positive‐ion multiple reaction monitoring mode. The respective mass transitions used for quantification of etoricoxib and etoricoxib‐d3 were m/z 359.0 → 280.1 and m/z 362.0 → 280.2. Calibration curves were linear over the concentration range of 5–5000 ng/mL. The validated method was applied in the pharmacokinetic study of etoricoxib in Chinese healthy volunteers under fed and fasted conditions. After a single oral dose of 120 mg, the main pharmacokinetic parameters of etoricoxib in fasted and fed groups were respectively as follows: peak concentration, 2364.78 ± 538.01 and 1874.55 ± 367.90 ng/mL; area under the concentration–time curve from 0 to 120 h, 44,605.53 ± 15,266.66 and 43,516.33 ± 12,425.91 ng h/mL; time to peak concentration, 2.00 and 2.50 h; and half‐life, 24.08 ± 10.06 and 23.64± 6.72 h. High‐fat food significantly reduced the peak concentration of etoricoxib (p = 0.001) but had no effect on the area under the concentration–time curve.  相似文献   

16.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for the simultaneous determination of metacavir and its two metabolites in rat plasma was developed and validated. Tinidazole was used as an internal standard and plasma samples were pretreated with one‐step liquid–liquid extraction. In addition, these analytes were separated using an isocratic mobile phase on a reverse‐phase C18 column and analyzed by MS in the selected reaction monitoring mode. The monitored precursor to product‐ion transitions for metacavir, 2′,3′‐dideoxyguanosine, O‐methylguanine and the internal standard were m/z 266.0 → 166.0, m/z 252.0 → 152.0, m/z 166.0 → 149.0 and m/z 248.0 → 202.0, respectively. The standard curves were found to be linear in the range of 1–1000 ng/mL for metacavir, 5–5000 ng/mL for 2′,3′‐dideoxyguanosine and 1–1000 ng/mL for O‐methylguanine in rat plasma. The precision and accuracy for both within‐ and between‐batch determination of all analytes ranged from 2.83 to 9.19% and from 95.86 to 111.27%, respectively. No significant matrix effect was observed. This developed method was successfully applied to an in vivo pharmacokinetic study after a single intravenous dose of 20 mg/kg metacavir in rats. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive and high‐throughput LC‐MS/MS method has been developed and validated for the combined determination of esomeprazole and naproxen in human plasma with ibuprofen as internal standard. Solid‐phase extraction was used to extract both analytes and internal standard from human plasma. Chromatographic separation was achieved in 4.0 min on XBridge C18 column using acetonitrile–25 mM ammonium formate (70:30, v/v) as mobile phase. Mass detection was achieved by ESI/MS/MS in negative ion mode, monitoring at m/z 344.19 → 194.12, 229.12 → 169.05 and 205.13 → 161.07 for esomeprazole, naproxen and IS, respectively. The calibration curves were linear from 3.00 to 700.02 ng/mL for esomeprazole and 0.50 to 150.08 ng/mL for naproxen. The intra‐ and inter‐batch precision and accuracy across four quality control levels met established criteria of US Food and Drug Administration guidelines. The assay is suitable for measuring accurate esomeprazole and naproxen plasma concentrations in human bioequivalence study following combined administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Euphol is a potential pharmacologically active ingredient isolated from Euphorbia kansui. A simple, rapid, and sensitive method to determine euphol in rat plasma was developed based on liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) for the first time. The analyte and internal standard (IS), oleanic acid, were extracted from plasma with methanol and chromatographied on a C18 short column eluted with a mobile phase of methanol–water–formic acid (95:5:0.1, v/v/v). Detection was performed by positive ion atmospheric pressure chemical ionization in selective reaction monitoring mode. This method monitored the transitions m/z 409.0 → 109.2 and m/z 439.4 → 203.2 for euphol and IS, respectively. The assay was linear over the concentration range 27–9000 ng/mL, with a limit of quantitation of 27 ng/mL. The accuracy was between –7.04 and 4.11%, and the precision was <10.83%. This LC‐MS/MS method was successfully applied to investigate the pharmacokinetic study of euphol in rats after intravenous (6 mg/kg) and oral (48 mg/kg) administration. Results showed that the absolute bioavailability of euphol was approximately 46.01%. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
The purpose of this study was to develop an ultra‐performance liquid chromatography with tandem mass spectrometry (UPLC‐MS/MS) method to determine armepavine in mouse blood. Nuciferine was used as internal standard. Chromatographic separation was performed on a UPLC BEH (2.1 × 50 mm, 1.7 μm) column with a gradient elution of acetonitrile and 10 mmol/L ammonium acetate solution (containing 0.1% formic acid). The quantitative analysis was conducted in multiple reaction monitoring mode with m/z 314.1 → 106.9 for armepavine and m/z 296.2 → 265.1 for nuciferine. Calibration curves were linear (r > 0.995) over the concentration range 1–1000 ng/mL in mouse blood with a lowest limit of quantitation of 1 ng/mL. The intra‐ and inter‐day precisions of armepavine in mouse were < 13.5 and 10.8%, respectively. The accuracy ranged between 86.8 and 103.3%. Meanwhile, the average recovery was >70.7% and the matrix effect was within the range 109.5–113.7%. All of the obtained data confirmed the satisfactory sensitivity and selectivity of the developed method which was then successfully applied to evaluate the pharmacokinetic behavior of armepavine in mouse for the first time. The bioavailability of armepavine in mouse was calculated to be 11.3%.  相似文献   

20.
A simple, robust, and rapid LC–MS/MS method has been developed and validated for the simultaneous quantitation of clopidogrel and its active metabolite (AM) in human plasma. Tris(2‐carboxyethyl)phosphine (TCEP) was used as a reducing agent to detect the AM as a disulfide‐bonded complex with plasma proteins. Mixtures of TCEP and human plasma were deproteinized with acetonitrile containing 10 ng/mL of clopidogrel‐d4 as an internal standard (IS). The mixtures were separated on a C18 RP column with an isocratic mobile phase consisting of 0.1% formic acid in acetonitrile and water (90:10, v/v) at a flow rate of 0.3 mL/min. Detection and quantification were performed using ESI‐MS. The detector was operated in selected reaction‐monitoring mode at m/z 322.0→211.9 for clopidogrel, m/z 356.1→155.2 for the AM, and m/z 326.0→216.0 for the IS. The linear dynamic range for clopidogrel and its AM were 0.05–20 and 0.5–200 ng/mL, respectively, with correlation coefficients (r) greater than 0.9976. Precision, both intra‐ and interday, was less than 8.26% with an accuracy of 87.6–106%. The validated method was successfully applied to simultaneously analyze clinical samples for clopidogrel and its AM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号