首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We consider discrete equivariant dynamical systems and obtain results about the structure of attractors for such systems. We show, for example, that the symmetry of an attractor cannot, in general, be an arbitrary subgroup of the group of symmetries. In addition, there are group-theoretic restrictions on the symmetry of connected components of a symmetric attractor. The symmetry of attractors has implications for a new type of pattern formation mechanism by which patterns appear in the time-average of a chaotic dynamical system.Our methods are topological in nature and exploit connectedness properties of the ambient space. In particular, we prove a general lemma about connected components of the complement of preimage sets and how they are permuted by the mapping.These methods do not themselves depend on equivariance. For example, we use them to prove that the presence of periodic points in the dynamics limits the number of connected components of an attractor, and, for one-dimensional mappings, to prove results on sensitive dependence and the density of periodic points.  相似文献   

2.
On properties of hyperchaos: Case study   总被引:1,自引:0,他引:1  
Some properties of hyperchaos are exploited by studying both uncoupled and coupled CML. In addition to usual properties of chaotic strange attractors, there are other interesting properties, such as: the number of unstable periodic points embedded in the strange attractor increases dramatically increasing and a large number of low-dimensional chaotic invariant sets are contained in the strange attractor. These properties may be useful for regarding the edge of chaos as the origin of complexity of dynamical systems. The project supported by the National Natural Science Foundation of China  相似文献   

3.
This paper discusses the derivation of discrete low-dimensional models for the non-linear vibration analysis of thin shells. In order to understand the peculiarities inherent to this class of structural problems, the non-linear vibrations and dynamic stability of a circular cylindrical shell subjected to dynamic axial loads are analyzed. This choice is based on the fact that cylindrical shells exhibit a highly non-linear behavior under both static and dynamic axial loads. Geometric non-linearities due to finite-amplitude shell motions are considered by using Donnell’s nonlinear shallow shell theory. A perturbation procedure, validated in previous studies, is used to derive a general expression for the non-linear vibration modes and the discretized equations of motion are obtained by the Galerkin method. The responses of several low-dimensional models are compared. These are used to study the influence of the modelling on the convergence of critical loads, bifurcation diagrams, attractors and large amplitude responses of the shell. It is shown that rather low-dimensional and properly selected models can describe with good accuracy the response of the shell up to very large vibration amplitudes.  相似文献   

4.
This short paper introduces a new 3D strange attractor topologically different from any other known chaotic attractors. The intentionally constructed model of three autonomous first-order differential equations derives from the coupling-induced complexity of the well-established 2D Lotka?CVolterra oscillator. Its chaotification process via an anti-equilibrium feedback allows the exploration of a new domain of dynamical behavior including chaotic patterns. To focus a rapid presentation, a fixed set of parameters is selected linked to the widest range of dynamics. Indeed, the new system leads to a chaotic attractor exhibiting a double scroll bridged by a loop. It mutates to a single scroll with a very stretched loop by the variation of one parameter. Indexes of stability of the equilibrium points corresponding to the two typical strange attractors are also investigated. To encompass the global behavior of the new low-dimensional dissipative dynamical model, diagrams of bifurcation displaying chaotic bubbles and windows of periodic oscillations are computed. Besides, the dominant exponent of the Lyapunov spectrum is positive reporting the chaotic nature of the system. Eventually, the novel chaotic model is suitable for digital signal encryption in the field of communication with a rich set of keys.  相似文献   

5.
Nonlinear dynamical systems often have multiple stable states and thus can harbor coexisting and hidden attractors that may pose an inconvenience or even hazard in practical applications. Amplitude control provides one method to detect these coexisting attractors, and it explains the unpredictable and irreproducible behavior that sometimes occurs in carefully engineered systems. In this paper, two regimes of amplitude control are described to illustrate the method for detecting multistability and possible coexisting or hidden attractors.  相似文献   

6.
张毅  韩修静  毕勤胜 《力学学报》2019,51(1):228-236
簇发振荡是自然界和科学技术中广泛存在的快慢动力学现象,其具有与通常的振荡显著不同的特性.根据不同的动力学机制可将其分为多种模式,例如,点-点型簇发振荡和点-环型簇发振荡等.叉型滞后簇发振荡是由延迟叉型分岔诱发的一类具有简单动力学特性的点-点型簇发振荡.研究以多频参数激励Duffing系统为例,旨在揭示一类与延迟叉型分岔相关的具有复杂动力学特性的簇发振荡,即串联式叉型滞后簇发振荡.考虑了一个参激频率是另一个的整倍数情形,利用频率转换快慢分析法得到了多频参数激励Duffing系统的快子系统和慢变量,分析了快子系统的分岔行为.研究结果表明,快子系统可以产生两个甚至多个叉型分岔点;当慢变量穿越这些叉型分岔点时,形成了两个或多个叉型滞后簇发振荡;这些簇发振荡首尾相接,最终构成了所谓的串联式叉型滞后簇发振荡.此外,分析了参数对串联式叉型滞后簇发振荡的影响.   相似文献   

7.

This work investigates the dynamics of a microbeam-based MEMS device in the neighborhood of a 2:1 internal resonance between the third and fifth vibration modes. The saturation of the third mode and the concurrent activation of the fifth are observed. The main features are analyzed extensively, both experimentally and theoretically. We experimentally observe that the complexity induced by the 2:1 internal resonance covers a wide driving frequency range. Constantly comparing with the experimental data, the response is examined from a global perspective, by analyzing the attractor-basins scenario. This analysis is conducted both in the third-mode and in fifth-mode planes. We show several metamorphoses occurring as proceeding from the principal resonance to the 2:1 internal resonance, up to the final disappearance of the resonant and non-resonant attractors. The shape and wideness of all the basins are examined. Although they are progressively eroded, an appreciable region is detected where the compact cores of the attractors involved in the 2:1 internal resonance remain substantial, which allows effectively operating them under realistic conditions. The dynamical integrity of each resonant branch is discussed, especially as approaching the bifurcation points where the system becomes more vulnerable to the dynamic pull-in instability.

  相似文献   

8.
For wavy liquid films, the principle of selection of the periodic solutions realized experimentally as regular waves is justified. By means of numerical methods, the bifurcations of the families of steady periodic waves and the attractors of the corresponding nonstationary problem are systematically studied. A comparison of the bifurcations and the attractors shows that, when several periodic solutions exist for a given wave number, the solution with the maximum wave amplitude and the maximum phase velocity develops from small initial disturbances (the dominating wave regime). With wave number variation, near the bifurcation points the attractor passes discontinuously from one family to another. This passage is accompanied by the appearance of two-periodic solutions in small neighborhoods of these points. The relations between the calculated parameters of the dominating waves are in a good agreement with all the available experimental data.  相似文献   

9.
Rayleigh–Bénard convection with large-Prandtl number (P) is studied using a low-dimensional model constructed with the energetic modes of pseudospectral direct numerical simulations. A detailed bifurcation analysis of the non-linear response has been carried out for water at room temperature (P=6.8) as the working fluid. This analysis reveals a rich instability and chaos picture: steady rolls, time-periodicity, quasiperiodicity, phase locking, chaos, and crisis. Our low-dimensional model captures the reappearance of ordered states after chaos, as previously observed in experiments and simulations. We also observe multiple coexisting attractors consistent with previous experimental observations for a range of parameter values. The route to chaos in the model occurs through quasiperiodicity and phase locking, and attractor-merging crisis. Flow patterns spatially moving along the periodic direction have also been observed in our model.  相似文献   

10.
We investigate a model of a dynamical system of a conflict triad that describes the interaction between the substances of the natural triad: biological populations (life), environment (living resources), and negative influences (infection). The main phases of coexistence of the substances of the triad are established: the equilibrium dynamical state (a stable fixed point), cyclic attractors, periodically oscillating trajectories, and evolutions close to chaotic ones. The existence of bifurcation points and thresholds of transitions between phases are shown for specific models.  相似文献   

11.
We show that a free surface water flow of constant nonzero vorticity beneath a wave train and above a flat bed has to be two-dimensional and the vorticity must have only one nonzero component which points in the horizontal direction orthogonal to the direction of wave propagation. The obtained results are of relevance to studies of resonant wave train interactions in flows of constant nonzero vorticity: in contrast to irrotational flows, all wave trains have to propagate in the same direction. An important practical aspect of these considerations lies in that wave trains of constant vorticity model the interaction of swell with tidal currents, negative vorticity being appropriate for the flood current and positive vorticity for the ebb current.  相似文献   

12.
Delamination is an important failure mechanism in certain types of composite structures. As layers of the composite become separated from one another, the composite loses some of its structural integrity and may not be capable of supporting the intended loads. Detecting this type of damage is currently a problem of interest to the structural health monitoring community. However, in order to design an appropriate detection strategy, knowledge of the underlying physics of delaminated structures is essential. Here, a low-dimensional model of a delamination in a laminated beam is developed. The model consists of only five elements yet is capable of capturing much of the behavior observed in an accompanying experiment. Both experimental and theoretical results are presented for the static response of a thin, delaminated beam.  相似文献   

13.
The emergence of multistability in a simple three-dimensional autonomous oscillator is investigated using numerical simulations, calculations of Lyapunov exponents and bifurcation analysis over a broad area of two-dimensional plane of control parameters. Using Neimark–Sacker bifurcation of 1:1 limit cycle as the starting regime, many parameter islands with the coexisting attractors were detected in the phase diagram, including the coexistence of torus, resonant limit cycles and chaos; and transitions between the regimes were considered in detail. The overlapping between resonant limit cycles of different winding numbers, torus and chaos forms the multistability.  相似文献   

14.
15.
双频1:2激励下修正蔡氏振子两尺度耦合行为   总被引:5,自引:4,他引:1  
夏雨  毕勤胜  罗超  张晓芳 《力学学报》2018,50(2):362-372
不同尺度耦合系统存在的复杂振荡及其分岔机理一直是当前国内外研究的热点课题之一. 目前相关工作大都是针对单频周期激励频域两尺度系统,而对于含有两个或两个以上周期激励系统尺度效应的研究则相对较少. 为深入揭示多频激励系统的不同尺度效应,本文以修正的四维蔡氏电路为例,通过引入两个频率不同的周期电流源,建立了双频1:2周期激励两尺度动力学模型. 当两激励频率之间存在严格共振关系,且周期激励频率远小于系统的固有频率时,可以将两周期激励项转换为单一周期激励项的函数形式. 将该单一周期激励项视为慢变参数,给出了不同激励幅值下快子系统随慢变参数变化的平衡曲线及其分岔行为的演化过程,重点考察了3种较为典型的不同外激励幅值下系统的簇发振荡行为. 结合转换相图,揭示了各种簇发振荡的产生机理. 系统的轨线会随慢变参数的变化,沿相应的稳定平衡曲线运动,而fold分岔会导致轨迹在不同稳定平衡曲线上的跳跃,产生相应的激发态. 激发态可以用从分岔点向相应稳定平衡曲线的暂态过程来近似,其振荡幅值的变化和振荡频率也可用相应平衡点特征值的实部和虚部来描述,并进一步指出随着外激励幅值的改变,导致系统参与簇发振荡的平衡曲线分岔点越多,其相应簇发振荡吸引子的结构也越复杂.   相似文献   

16.
Linear and non-linear vibrations of a U-shaped hollow microcantilever beam filled with fluid and interacting with a small particle are investigated. The microfluidic device is assumed to be subjected to internal flowing fluid carrying a buoyant mass. The equations of motion are derived via extended Hamilton's principle and by using Euler-Bernoulli beam theory retaining geometric and inertial non-linearities. A reduced-order model is obtained applying Galerkin's method and solved by using a pseudo arc-length continuation and collocation scheme to perform bifurcation analysis and obtain frequency response curves. Direct time integration of the equations of motion has also been performed by using Adams-Moulton method to obtain time histories and analyze transient cantilever-particle interactions in depth. It is shown that exploiting near resonant non-linear behavior of the microcantilever could potentially yield enhanced sensor metrics. This is found to be due to the transitions that occur as a matter of particle movement near the saddle-node bifurcation points of the coupled system that lead to jumps between coexisting stable attractors.  相似文献   

17.
We report the first systematic laboratory observations of 3-D features of wind waves at early stages of wave field development. The experiments performed in the large IRPHE-Luminy wind-wave tank provided instantaneous reconstruction of the decimeter-scale water surface motions based on simultaneous imaging of the wave slopes in two perpendicular directions. Five essentially distinct regimes in the 3-D evolution of the dominant waves have been identified. Each regime is characterized by different types of 3-D wave patterns associated with specific ranges of wave scale and wave steepness. The likely scenario of the evolution and the possible physical mechanisms of the pattern formation are discussed.  相似文献   

18.
We derive a water wheel model from first principles under the assumption of an asymmetric water wheel for which the water inflow rate is in general unsteady (modeled by an arbitrary function of time). Our model allows one to recover the asymmetric water wheel with steady flow rate, as well as the symmetric water wheel, as special cases. Under physically reasonable assumptions, we then reduce the underlying model into a non-autonomous nonlinear system. In order to determine parameter regimes giving chaotic dynamics in this non-autonomous nonlinear system, we consider an application of competitive modes analysis. In order to apply this method to a non-autonomous system, we are required to generalize the competitive modes analysis so that it is applicable to non-autonomous systems. The non-autonomous nonlinear water wheel model is shown to satisfy competitive modes conditions for chaos in certain parameter regimes, and we employ the obtained parameter regimes to construct the chaotic attractors. As anticipated, the asymmetric unsteady water wheel exhibits more disorder than does the asymmetric steady water wheel, which in turn is less regular than the symmetric steady state water wheel. Our results suggest that chaos should be fairly ubiquitous in the asymmetric water wheel model with unsteady inflow of water.  相似文献   

19.
This paper studies a second-order differential equation with two heteroclinic solutions to two saddle fixed points. When an equation is periodically perturbed, one heteroclinic solution generates tangle while the other remains unbroken. We illustrate chaotic dynamics in the sense of Smale horseshoes and Hénon-like attractors with SRB measures. More explicitly, we obtain three different dynamical phenomena, namely the transient heteroclinic tangles containing no physical measures, heteroclinic tangles dominated by sinks representing stable dynamical behavior, and heteroclinic tangles with Hénon-like attractors admitting SRB measures representing chaos. We also demonstrate that three types of phenomena repeat periodically as the forcing magnitude goes to zero.  相似文献   

20.
A rigorous derivation of non-linear equations governing the dynamics of an axially loaded beam is given with a clear focus to develop robust low-dimensional models. Two important loading scenarios were considered, where a structure is subjected to a uniformly distributed axial and a thrust force. These loads are to mimic the main forces acting on an offshore riser, for which an analytical methodology has been developed and applied. In particular, non-linear normal modes (NNMs) and non-linear multi-modes (NMMs) have been constructed by using the method of multiple scales. This is to effectively analyse the transversal vibration responses by monitoring the modal responses and mode interactions. The developed analytical models have been crosschecked against the results from FEM simulation. The FEM model having 26 elements and 77 degrees-of-freedom gave similar results as the low-dimensional (one degree-of-freedom) non-linear oscillator, which was developed by constructing a so-called invariant manifold. The comparisons of the dynamical responses were made in terms of time histories, phase portraits and mode shapes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号