首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 636 毫秒
1.
A generalization of a finite difference method for calculating numerical solutions to systems of nonlinear hyperbolic conservation laws in one spatial variable is investigated. A previously developed numerical technique called the relaxation method is modified from its initial application to solve initial value problems for systems of nonlinear hyperbolic conservation laws. The relaxation method is generalized in three ways herein to include problems involving any combination of the following factors: systems of nonlinear hyperbolic conservation laws with spatially dependent flux functions, nonzero forcing terms, and correctly posed boundary values. An initial value problem for the forced inviscid Burgers' equation is used as an example to show excellent agreement between theoretical solutions and numerical calculations. An initial boundary value problem consisting of a system of four partial differential equations based on the two-layer shallow-water equations is solved numerically to display a more general applicability of the method than was previously known.  相似文献   

2.
We consider a transport boundary value problem for an isotropic elastic medium bounded by a cylindrical surface of arbitrary cross-section and subjected to supersonic transport loads. We pose the corresponding hyperbolic boundary value problem and prove the uniqueness of the solution with regard to shock waves. To solve the problem, we use the method of generalized functions. In the space of generalized functions, we obtain the solution, perform its regularization, and construct a dynamic analog of the Somigliana formula and singular boundary equations solving the boundary value problem.  相似文献   

3.
In this article, we apply the univariate multiquadric (MQ) quasi‐interpolation to solve the hyperbolic conservation laws. At first we construct the MQ quasi‐interpolation corresponding to periodic and inflow‐outflow boundary conditions respectively. Next we obtain the numerical schemes to solve the partial differential equations, by using the derivative of the quasi‐interpolation to approximate the spatial derivative of the differential equation and a low‐order explicit difference to approximate the temporal derivative of the differential equation. Then we verify our scheme for the one‐dimensional Burgers' equation (without viscosity). We can see that the numerical results are very close to the exact solution and the computational accuracy of the scheme is ??(τ), where τ is the temporal step. We can improve the accuracy by using the high‐order quasi‐interpolation. Moreover the methods can be generalized to the other equations. © 2005 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2006  相似文献   

4.
We present in this paper an error analysis of a fractional-step method for the approximation of the unsteady incompressible Navier-Stokes equations. Under mild regularity assumptions on the continuous solution, we obtain second-order error estimates in the time step size, both for velocity and pressure. Numerical results in agreement with the error analysis are also presented.  相似文献   

5.
We consider a predator-prey model arising in ecology that describes a slow-fast dynamical system. The dynamics of the model is expressed by a system of nonlinear differential equations having different time scales. Designing numerical methods for solving problems exhibiting multiple time scales within a system, such as those considered in this paper, has always been a challenging task. To solve such complicated systems, we therefore use an efficient time-stepping algorithm based on fractional-step methods. To develop our algorithm, we first decouple the original system into fast and slow sub-systems, and then apply suitable sub-algorithms based on a class of θ-methods, to discretize each sub-system independently using different time-steps. Then the algorithm for the full problem is obtained by utilizing a higher-order product method by merging the sub-algorithms at each time-step. The nonlinear system resulting from the use of implicit schemes is solved by two different nonlinear solvers, namely, the Jacobian-free Newton-Krylov method and the well-known Anderson’s acceleration technique. The fractional-step θ-methods give us flexibility to use a variety of methods for each sub-system and they are able to preserve qualitative properties of the solution. We analyze these methods for stability and convergence. Several numerical results indicating the efficiency of the proposed method are presented. We also provide numerical results that confirm our theoretical investigations.  相似文献   

6.
In this paper, we propose a simple and robust numerical method for the forced Korteweg–de Vries (fKdV) equation which models free surface waves of an incompressible and inviscid fluid flow over a bump. The fKdV equation is defined in an infinite domain. However, to solve the equation numerically we must truncate the infinite domain to a bounded domain by introducing an artificial boundary and imposing boundary conditions there. Due to unsuitable artificial boundary conditions, most wave propagation problems have numerical difficulties (e.g., the truncated computational domain must be large enough or the numerical simulation must be terminated before the wave approaches the artificial boundary for the quality of the numerical solution). To solve this boundary problem, we develop an absorbing non-reflecting boundary treatment which uses outward wave velocity. The basic idea of the proposing algorithm is that we first calculate an outward wave velocity from the solutions at the previous and present time steps and then we obtain a solution at the next time step on the artificial boundary by moving the solution at the present time step with the velocity. And then we update solutions at the next time step inside the domain using the calculated solution on the artificial boundary. Numerical experiments with various initial conditions for the KdV and fKdV equations are presented to illustrate the accuracy and efficiency of our method.  相似文献   

7.
A three– dimensional, time dependent free surface model has been developed for predicting circulation and surface height variations in a tidal bay. An explicit finite difference numerical solution is obtained by transforming the vertical coordinate in the governing model equations. The transformed geometry consists of a fixed, flat free surface and a constant depth basin for easy computation. The ocean–bay interface open boundary condition is incorporated into this hydrodynamic model without approximation, and yields rather accurate results for the bay circulation and tide level variations. The numerical method employs a staggered grid Richardson lattice, which has the inherent property of not requiring calculation of the tangential velocity components on solid surfaces. The momentum equations ignore horizontal diffusion which is small for the South Biscayne Bay, for which vertical diffusion and advection dominate.  相似文献   

8.
We establish the existence and stability of multidimensional transonic shocks for the Euler equations for steady potential compressible fluids. The Euler equations, consisting of the conservation law of mass and the Bernoulli law for the velocity, can be written as a second-order, nonlinear equation of mixed elliptic-hyperbolic type for the velocity potential. The transonic shock problem can be formulated into the following free boundary problem: The free boundary is the location of the transonic shock which divides the two regions of smooth flow, and the equation is hyperbolic in the upstream region where the smooth perturbed flow is supersonic. We develop a nonlinear approach to deal with such a free boundary problem in order to solve the transonic shock problem. Our results indicate that there exists a unique solution of the free boundary problem such that the equation is always elliptic in the downstream region and the free boundary is smooth, provided that the hyperbolic phase is close to a uniform flow. We prove that the free boundary is stable under the steady perturbation of the hyperbolic phase. We also establish the existence and stability of multidimensional transonic shocks near spherical or circular transonic shocks.

  相似文献   


9.
We prove the small-time existence of a solution of the Navier-Stokes equations, for any initial data, for a free boundary fluid with surface tension taken into account. A fixed point method is used. The linearized problem is hyperbolic and dissipative. The classical methods to solve it seem to fail and the method used here could perhaps be applied for equations of the same kind.  相似文献   

10.
This note deals with the low-frequency time-harmonic Maxwell equations for a heterogeneous media in bidimensional bounded domains. We propose a three step method to solve this problem. First, we construct an extension of the boundary data solving a scalar Neumann problem for the Laplace operator. Second, we solve a problem in the conductor with an unusual boundary condition of nonlocal type. Third, we solve a boundary value problem in the insulator using the solution calculated in the conductor. Also, this third problem can be reduced to a Neumann problem for the Laplace operator.  相似文献   

11.
We obtain point transformations for three one-dimensional systems: shallow-water equations on a flat and a sloping bottom and the system of linear equations obtained by formal linearization of shallow-water equations on a sloping bottom. The passage of these systems to the Carrier-Greenspan parametrization is also obtained. For linear shallow-water equations on a sloping bottom, we obtain the solution in the form of a traveling wave with variable velocity. We establish the relationship between the resulting solution and the solution of the two-dimensional wave equation.  相似文献   

12.
许丽萍 《应用数学》2012,25(3):481-487
把最近提出的G′/G展开法推广到了非线性微分差分方程,利用该方法成功构造了一种修正的Volterra链和Toda链的双曲函数、三角函数以及有理函数三类涉及任意参数的行波解,当这些参数取特殊值时,可得这两个方程的扭状孤立波解、奇异行波解以及三角函数状的周期波解等.研究结果表明,该算法探讨非线性微分差分方程精确解十分有效、简洁.  相似文献   

13.
We consider quasi-geostrophic (QG) models in two- and three-layers that are useful in theoretical studies of planetary atmospheres and oceans. In these models, the streamfunctions are given by (1+2) partial differential systems of evolution equations. A two-layer QG model, in a simplified version, is dependent exclusively on the Rossby radius of deformation. However, the f-plane QG point vortex model contains factors such as the density, thickness of each layer, the Coriolis parameter, and the constant of gravitational acceleration, and this two-layered model admits a lesser number of Lie point symmetries, as compared to the simplified model. Finally, we study a three-layer oceanography QG model of special interest, which includes asymmetric wind curl forcing or Ekman pumping, that drives double-gyre ocean circulation. In three-layers, we obtain solutions pertaining to the wind-driven doublegyre ocean flow for a range of physically relevant features, such as lateral friction and the analogue parameters of the f-plane QG model. Zero-order invariants are used to reduce the partial differential systems to ordinary differential systems. We determine conservation laws for these QG systems via multiplier methods.  相似文献   

14.
用函数论的方法研究了三类超定双曲型方程组的解,即三类多双曲复方程组在一般柱形域上的Riemann-Hilbert边值问题的提法,可解条件,解的表示,唯一性和存在性.  相似文献   

15.
The paper is concerned with the new iteration algorithm to solve boundary integral equations arising in boundary value problems of mathematical physics. The stability of the algorithm is demonstrated on the problem of a flow around bodies placed in the incompressible inviscid fluid. With a discrete numerical treatment, we approximate the exact matrix by a certain Töeplitz one and then apply a fast algorithm for this matrix, on each iteration step. We illustrate the convergence of this iteration scheme by a number of numerical examples, both for hard and soft boundary conditions. It appears that the method is highly efficient for hard boundaries, being much less efficient for soft boundaries.  相似文献   

16.
We prove the local decay of the energy of the solution to a mixed initial boundary value problem for the linearized shallow-water equations with constant coefficients, where the domain is a half-plane, a certain dissipative boundary condition is prescribed and the initial data have compact support contained in the open half-plane.  相似文献   

17.
In this paper, an implicit fractional-step method for numerical solutions of the incompressible Navier–Stokes equations is studied. The time advancement is decomposed into a sequence of two steps, and the first step can be seen as a linear elliptic problem; on the other hand, the second step has the structure of the Stokes problem. The two problems satisfy the full homogeneous Dirichlet boundary conditions on the velocity. At the same time, we introduce a diffusion term −θΔu in all steps of the schemes. It allows to calculate by the large time step and enhance numerical stability by choosing the proper parameter values of θ. The convergence analysis and error estimates for the intermediate velocities, the end-of step velocities and the pressure solution are derived. Finally, numerical experiments show that the feasibility and effectiveness of this method.  相似文献   

18.
For quasilinear systems of hyperbolic equations, the nonclassical boundary value problem of controlling solutions with the help of boundary conditions is considered. Previously, this problem was extensively studied in the case of the simplest hyperbolic equations, namely, the scalar wave equation and certain linear systems. The corresponding problem formulations and numerical solution algorithms are extended to nonlinear (quasilinear and conservative) systems of hyperbolic equations. Some numerical (grid-characteristic) methods are considered that were previously used to solve the above problems. They include explicit and implicit conservative difference schemes on compact stencils that are linearizations of Godunov’s method. The numerical algorithms and methods are tested as applied to well-known linear examples.  相似文献   

19.
We present an analytical method for the computation of problems of incompressible boundary layer theory based on an application of the method of successive approximations. The system of equations is reduced to a form suitable for integration. Parameters characterizing the external flow and the body geometry are contained only in the coefficients of the system and do not enter into the boundary conditions. The transformed momentum equations are integrated across the boundary layer from a current value to infinity with the boundary conditions taken into account. If the integration is made from zero to infinity, then the equations pass over into the Kármán relations. Integrating the system of equations a second time, using the boundary conditions at the wall, we obtain a system of nonlinear integro-differential equations. To solve this system of equations we apply the method of successive approximations. To satisfy the boundary Conditions at infinity we introduce, at each step of the iterations, unknown “governing” functions. From the conditions at the outer side of the boundary layer we obtain additional equations for their determination. With the iterational algorithm formulated in this way, the boundary conditions, both on the body and at the outer side of the boundary layer; are satisfied automatically.We consider a locally self-similar approximation. In this case, relative to the “governing” functions, we obtain an algebraic system of equations. We write out the solution in the first approximation. The results obtained in the first approximation are compared with the results of finite-difference computations for a wide range of problems. The results obtained in this paper are compared with those obtained in [1] for the flow in the neighborhood of a stagnation point. An indication is given of the nonuniqueness of the solutions of the three-dimensional boundary layer equations.  相似文献   

20.
We present an Eulerian–Lagrangian method for the numerical solution of coupled parabolic-hyperbolic equations. The method combines advantages of the modified method of characteristics to accurately solve the hyperbolic equations with an Eulerian method to discretize the parabolic equations. The Runge–Kutta Chebyshev scheme is used for the time integration. The implementation of the proposed method differs from its Eulerian counterpart in the fact that it is applied during each time step, along the characteristic curves rather than in the time direction. The focus is on constructing explicit schemes with a large stability region to solve coupled radiation hydrodynamics models. Numerical results are presented for two test examples in coupled convection-radiation and conduction–radiation problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号