首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 859 毫秒
1.
为了消除光纤陀螺的温度效应并提高陀螺的精度,BP神经网络模型广泛的应用在光纤陀螺的零偏温度漂移辨识和补偿中。然而,单神经网络模型的泛化能力差,影响模型的预测结果。结合神经网络集成学习的思想,利用Bagging集成技术产生差异大、预测能力强的个体网络,提升模型的预测能力。建立光纤陀螺零偏温度的BP-Bagging模型,将其应用在温度补偿中。通过对某型光纤陀螺的零偏漂移数据进行仿真,结果表明:BP-Bagging模型相比线性回归模型、单BP神经网络模型的补偿效果更显著,有效改善了陀螺的零偏稳定性能。  相似文献   

2.
一种低精度惯性测量单元的精确标定技术   总被引:1,自引:3,他引:1  
低精度惯性测量单元的温度特性和非线性严重,为补偿光纤陀螺的温度特性和非线性,通过高低温、多速率的标定实验研究了光纤陀螺输出电压与温度、转速的关系,采用零偏和标度因数统一标定的思想提出了光纤陀螺分段模型;为补偿MEMS加速度计的温度特^陛,通过高低温位置实验研究了加速度计输出电压与温度、输入加速度的关系,提出了加速度计分段模型。采用逐步线性回归对以上模型进行了简化。实时补偿效果表明,当温度从-30℃到60℃变化时,在±60(°)/s转速内角速度误差基本小于0.02(°)/s,加速度误差小于0.005g.  相似文献   

3.
斜置惯性测量单元的一体化标定技术   总被引:1,自引:0,他引:1  
针对陀螺和加速度计均倾斜安装的低精度惯性测量单元,将三个 MEMS 加速度计组件和三个光纤陀螺组件分别考虑为一个整体,提出了一体化标定技术,将传统的零位、比例因子、安装误差等参数等效考虑为一个转换矩阵。根据实验得到的低精度斜置惯性测量单元的温度特性和非线性的经验公式,提出了补偿温度特性和非线性的一体化标定模型。利用速率转台和大理石平板在不同温度下进行测试,采用多元线性回归,得到了实用的角速度模型与加速度模型。实时补偿效果表明,当温度从 0℃到 24℃变化时,在±60(°)/s 转速内角速度误差小于 0.02 (°)/s,加速度误差小于 0.003g。  相似文献   

4.
针对光纤陀螺的温度误差单一模型补偿方法适配性较差的问题,提出一种基于粒子群优化(PSO)算法的光纤陀螺温度误差分段补偿方法。此方法基于分段建模补偿的思想,在建模时加入温度和温度变化率影响因子,并引入PSO算法极值寻优,得到最优补偿函数。为了验证此方法的补偿效果,设计了?15℃~50℃区间内光纤陀螺温度实验,分别利用所提方法和传统方法对其温度误差进行补偿。试验结果表明,使用所提方法能够极大地降低温度误差,与传统算法相比,在保证补偿后陀螺零偏稳定性一致的前提下陀螺零偏均值降低了一个数量级,并且具有实时补偿性。  相似文献   

5.
由于光纤陀螺各组件对温度敏感,因此温度成为影响光纤陀螺精度的重要原因之一。为了消除温度效应并提高陀螺精度,通常采用对光纤陀螺进行温度建模的方法对其输出进行补偿。在对随机过程中的马尔可夫过程进行深入研究的基础上,推导出了单入单出系统的一阶受控马尔可夫链与差分方程的关系,并以此为依据建立了光纤陀螺温度模型,利用时齐转移概率对模型进行辨识,最后利用蒙特卡罗方法进行补偿后的结果仿真。通过对比补偿前后的输出可以看出,使用该方法建立的模型具有较好的预测效果,具有一定的应用前景,对光纤陀螺温度补偿工程化实现有一定的意义。  相似文献   

6.
针对金属谐振陀螺随温度漂移的问题,提出了一种基于支持向量回归的多元温度补偿方法。首先分析温度、温度梯度及温度变化率对陀螺输出的影响,在此基础上设计全温区实验,采用小波去噪对实验数据进行预处理,然后根据金属谐振陀螺输出特性,综合每次实验陀螺输出的微小变化,选择径向基核函数对实验数据进行特征提取,并基于此建立基于温度、温度变化率及温度梯度的多元补偿模型,剔除非相关项,最终得到金属谐振陀螺多元温度补偿模型。实验结果表明,此方法可有效提高金属谐振陀螺的温度性能,全温区陀螺零偏稳定性提高一个量级以上。  相似文献   

7.
为提高光电平台的控制性能和稳定性,以平台反馈回路所用的光纤陀螺传感器为研究对象,对光纤陀螺角速率的历史输出、当前量测以及随机漂移进行融合补偿。采用双自回归模型确定了光纤陀螺时间序列输出的自回归多项式和光纤陀螺随机漂移的自回归关系。以陀螺当前输出为量测量,结合卡尔曼滤波算法将陀螺历史输出和历史随机漂移融合进状态方程,并进行随机漂移在线估计补偿。实验结果表明,光纤陀螺随机漂移的AR模型能达到90%拟合效果,经卡尔曼滤波补偿后随机漂移能降到1/10。该方法能很好地抑制光电平台三个框架轴光纤陀螺的随机漂移,补偿率为80%~90%。  相似文献   

8.
为减小温度对导航精度的影响,实现系统级的温度补偿,在实验中采用静态条件下的标定方法;基于激光陀螺捷联惯性系统的误差模型方程,用广义逆算法顺利分离求得陀螺各零偏及标度因数值;根据以往温度误差模型的结构特点,运用渐近辨识方法(ASYM)中的最终输出误差准则(FOE)对温度误差模型中非线性部分的阶次进行准确的计算,确定了合理的温度误差模型结构。为了解决用最小二乘法辨识模型结构的系数时,信息矩阵求逆容易溢出的问题,采用了自适应的岭估计算法确定陀螺零偏温度误差模型的系数,实现了系统级的温度误差建模。所得到的温度误差模型补偿效果比定阶前明显提高。  相似文献   

9.
激光捷联惯导系统上电启动时,陀螺受温度影响其零偏会经历快速变化到逐渐稳定的过程,影响惯导系统应用精度。因此,提出了一种基于粒子群-反向传播神经网络(PSO-BP)的激光陀螺温度补偿方法,利用粒子群算法寻找神经网络模型的最优权值与阈值,以温度和温度梯度作为自变量,建立陀螺零偏输出的补偿模型。激光惯导系统工作温度范围内的温度试验结果表明:与传统反向传播神经网络算法相比,所提出的PSO-BP神经网络模型的速度提高了4倍,模型拟合精度更高,且避免了反向传播算法易陷入局部最优解的问题。经过粒子群-反向传播算法补偿后,陀螺零偏稳定性相比温补前提高了60%,进一步验证了模型的有效性。  相似文献   

10.
传统光纤陀螺温度误差采用单一模型进行建模与补偿,存在模型适配性较差的问题。考虑到光纤陀螺在不同温度区间的温度特性存在明显差异,为提高光纤陀螺温度误差补偿精度,提出了基于多模型分段拟合的光纤陀螺温度误差补偿方法。设计了-1550℃区间内温度实验,在大量实测数据分析基础上,将陀螺温度特性按照低、中、高三个温度区间,分别建立三种不同阶次的温度误差模型。采用分段拟合的方法进行误差建模,并利用所建模型对光纤陀螺进行了温度误差补偿。实测数据表明,提出方法能够有效改善光纤陀螺的温度漂移,补偿后漂移标准差减少66.67%。  相似文献   

11.
为了提升光纤陀螺温度漂移模型建模的准确性及补偿的效果,提出了一种基于改进支持向量机的多尺度建模和回归方法。首先分析了造成光纤陀螺温度漂移的关键因素,给出了建模的属性参数和温度试验。然后根据经验模态分解得到的本征模态函数排列熵的变化趋势,得出了回归精度和熵之间的变化关系,进而提出了基于信号分解的多尺度回归方法。为了提高上述多尺度回归算法的适应性,在传统支持向量机的基础上,提出了基于组合核函数的支持向量机回归算法,以适应不同特性的回归数据集。为了进一步提高回归精度,基于降低回归数据复杂度的分段回归思想,在上述多尺度回归的基础上提出了双-多尺度回归,并验证了方法的有效性。最后,将提出的算法以实际的光纤陀螺温度漂移数据进行验证,结果表明,相比于传统的支持向量机和反向传播神经网络具有更好的回归精度,温度漂移模型也更加精确,以均方误差指标为例,回归精度提升了两个数量级。  相似文献   

12.
陀螺漂移与温度动态过程的试验分析   总被引:6,自引:0,他引:6  
本文讨论了陀螺仪起动时的热平衡过程,在陀螺漂移和内部温度,特别是温度的变化率之间建立动态数学模型,并且用广义最小二乘(GLS)和递推最小二乘(ILS)进行辨识。如果陀螺起动过程良好,就可以用补偿方法缩短惯导系统的准备时间。动力调谐陀螺起动过程的重复试验表明,这种方法是可行的  相似文献   

13.
为了提高光纤陀螺在高动态环境下的测量精度,需要精确地辨识角加速度信息以便有效地补偿。针对直接对陀螺的角速度信息微分处理后得到角加速度的方法误差较大的问题,提出了将微分后的角加速度信息分为线性和非线性两个部分,其中线性部分采用Savitzky-golay最小二乘拟合,而非线性部分则采用RBF神经网络技术进行拟合。上述处理方法能更真实地反映实际物理过程,具有较强的自适应性和较好的拟合效果。通过试验验证,证明了该方法的有效性和准确性,提高了角加速度辨识精度,比直接微分的方法测量精度提高二个数量级,有效地补偿了陀螺仪在高动态环境下的测量精度。  相似文献   

14.
光纤陀螺仪死区的原因分析及误差补偿   总被引:2,自引:0,他引:2  
光纤陀螺的死区严重影响陀螺的性能和惯导系统的导航精度,有必要分析死区产生的原因并采取相应的补偿措施。通过改变前置放大器的放大倍数,发现不同倍数下的死区大小也有所不同,继而证实了导致死区的干扰的存在。此外还从理论上分析了死区的产生原因,结果表明电路中的串扰是产生死区的主要原因,从而提出了采用方波补偿来消除陀螺输出中的死区,并证实了方法的有效性。  相似文献   

15.
MEMS硅微陀螺仪系统级建模与仿真研究   总被引:1,自引:1,他引:1  
根据MEMS陀螺仪敏感哥式加速度、测量角速度的原理,建立MEMS陀螺系统级行为模型是分析MEMS陀螺仪内部的驱动、检测和信号解调等行为过程及改进陀螺整个系统的性能的重要方法。根据MEMS陀螺的动力学方程及其内部组成,将MEMS陀螺分成驱动电路、传感器、信号调理电路等三部分,建立了MEMS陀螺系统级模拟行为模型,运用相关检测技术对角速度信号进行了提取,并对模型进行了仿真验证。仿真结果验证了所设计模型的有效性,所建模型可以用于MEMS陀螺的特性和性能分析。  相似文献   

16.
为研究扁平钢箱梁温度疲劳应力谱,以南溪长江大桥悬索桥主梁为研究对象,基于温度传感器长期实测数据,筛选实测数据的日温度极值,运用广义极值模型描述季节极值概率分布并采用极值外推方法得到设计基准期极值模型。引入拉丁超立方抽样(LHS)法对极值模型进行抽样,得到日温度极值样本。结合日温度极值样本和正弦函数模型,构建服役期内关注点的温度时程曲线。基于有限元ANSYS软件平台,分析不同温度梯度下关注点的应力效应,回归温度梯度与疲劳应力的线性关系式,依据温度梯度时程曲线与线性关系式模型,采用雨流计数法得到钢箱梁温度梯度疲劳应力谱。研究表明,模拟抽样生成的温度样本数据符合温度场的季节变化特征,样本概率模型与实测数据概率模型相对吻合。关注点温度梯度疲劳应力谱能够为扁平钢箱梁疲劳寿命设计提供参考。  相似文献   

17.
单通道控制是一种简单实用的旋转弹控制方式。通过控制旋转弹的舵面偏转方向,可减小弹体受横向角速率的影响,提高旋转弹的命中率。针对单通道控制方式,提出了一种可用于提供控制信号的硅微机械陀螺仪。陀螺仪无驱动部分,体积小,结构简单。其输出的正弦调幅信号的频率与旋转弹自旋频率相等,幅值与输入横向角速率呈线性关系。通过对陀螺仪输出信号进行线性化处理,可得到用于控制旋转弹舵面换相的等幅不等宽脉冲调宽信号。通过舵面在弹体自旋一周内的四次换相,可同时完成对导弹俯仰和偏航两个方向的控制。  相似文献   

18.
近钻头惯性测量模块(Near-bit Inertial Measurement,NIM)用于石油钻井中实时测量导向外套的姿态角,是导向钻进闭环控制中的重要组成部分。它采用三轴加速度计组合测量重力加速度实现姿态角测量。为了提高加速度计在工作温度范围内的测量精度,需对其进行温漂模型标定。针对三轴加速度计组合的传统12位置翻滚温度模型测定方法存在耗时长、操作效率低的局限性,提出一种新的加速度计三轴组合温度模型标定方法——两位置法,并通过实验验证了温度补偿的效果。在10℃~150℃的温度范围内,补偿后加速度的测量精度达5×10~(-4)g,完全满足NIM测量姿态角的要求。  相似文献   

19.
在全温范围内应用的光纤陀螺,其输入轴失准角随温度的变化是影响光纤陀螺惯性系统性能的重要指标之一。特别是在大角速率或者高精度应用时,失准角的变化误差甚至超过零偏漂移误差和标度因数误差。采用温度补偿技术是一种提升光纤陀螺温度性能的有效方法,其中建立精确的温度模型是关键。提出了一种连续旋转的光纤陀螺全温失准角快速建模补偿方法。基于单轴速率转台的连续旋转,可以有效识别光纤陀螺失准角在全温范围内的变化拐点,提高建模和补偿的精度。试验结果表明,某型光纤陀螺全温输入轴失准角变化约14″,补偿后全温输入轴失准角变化小于1″,精度提高了一个数量级以上。在高精度光纤陀螺惯性系统中,该方法可用于指导光纤陀螺失准角的实时温度补偿技术研究及工程实现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号