首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Equilibrium and nonequilibrium distributions of molecular aggregates in a solution of a nonionic surfactant are investigated at the total surfactant concentration above the second critical micelle concentration (CMC2). The investigation is not limited by the choice of a specific micellar model. Expressions for the direct and reverse fluxes of molecular aggregates over the potential humps of the aggregation work are derived. These aggregation work humps set up activation barriers for the formation of spherical and cylindrical micelles. With the aid of the expressions for molecular aggregate fluxes, a set of two kinetic equations of micellization is derived. This set, along with the material balance equation, describes the molecular mechanism of the slow relaxation of micellar solution above the CMC2. A realistic situation has been analyzed when the CMC2 exceeds the first critical micelle concentration, CMC1, by an order of magnitude, and the total surfactant concentration varies within the range lying markedly above the CMC2 but not by more than 2 orders of magnitude. For such conditions, an equation relating the parameters of the aggregation work of a cylindrical micelle to the observable ratio of the total surfactant concentration and the monomer concentration is found for an equilibrium solution. For the same conditions, but in the nonequilibrium state of materially isolated surfactant solution, a closed set of linearized relaxation equations for total concentrations of spherical and cylindrical micelles is derived. These equations determine the time development of two modes of slow relaxation in micellar solutions markedly above the CMC2. Solving the set of equations yields two rates and two times of slow relaxation.  相似文献   

2.
A system of the kinetic equations of the material balance for the concentrations of surfactant monomers and micelles in a micellar nonionic surfactant solution was formulated. The equilibrium state of a materially isolated micellar solution was analyzed. The system of the kinetic equations of the material balance of a micellar solution was solved. The total time of the establishment of equilibrium in a micellar solution was determined. It was shown that this time increases or (typically) decreases with an increase in micelle concentration, depending on the degree of micellization.  相似文献   

3.
4.
General (independent of models selected for surfactant molecular aggregates) analytical relations are derived to describe the initial stage of slow relaxation in micellar solutions with spherical micelles. This stage precedes the final stage of the relaxation occurring via an exponential decay of disturbances with time. The relations obtained are applicable throughout the interval of micellar solution concentrations from the first to the second critical micellization concentration. It is shown that the initial stage is characterized by power laws of variations in the concentrations of monomers and micelles with time, these laws being different for the relaxation processes proceeding from above and below toward equilibrium values of micellar solution parameters. Relations are derived for the duration of this stage, and the effect of initial conditions is studied. Characteristic times of the power-law stage are determined and compared with the characteristic time of the final exponent-law relaxation stage. The behavior of these times is investigated at surfactant solution concentrations in the vicinity of, and noticeably above, the first critical micellization concentration. On the basis of the droplet and quasi-droplet thermodynamic models of surfactant molecular aggregates, numerical solutions are found for nonlinearized equations of slow relaxation for the time dependence of surfactant monomer concentrations at all stages of the slow relaxation. Numerical results obtained from the models are compared with the results of a general analytical study.  相似文献   

5.
The dependence of the work of the molecular aggregate formation on the aggregation number and surfactant monomer concentration in solution that has the key role for the theory of micellization was studied on the basis of a simple realistic droplet model of spherical aggregate composed of surfactant molecules (the o/w micelle type). Analytical formulas were derived for the coordinates of maximum and minimum of aggregate formation work on the aggregation number axis arising with an increase in the concentration of micellar solution. Model calculations of the thermodynamic characteristics of the kinetics of micellization were performed for premicellar and micellar regions of aggregate sizes within a wide range of solution concentration including the critical micellization concentration.  相似文献   

6.
7.
8.
The Becker–Döring kinetic equations are employed to describe the stage of ultrafast relaxation in micellar surfactant solutions, which ends in the establishment of a quasi-equilibrium distribution in the premicellar region of aggregate sizes. This is performed by analyzing the spectrum of the eigenvalues of the matrix of kinetic coefficients of the linearized Becker–Döring difference equations, which describes the complete multistage relaxation in a micellar system. The first value of the spectrum ordered as an ascending series is equal to zero (infinite relaxation time), thereby corresponding to the law of conservation of the surfactant quantity. The second value is very small; it differs from the series of subsequent values by several orders of magnitude and determines the time of slow relaxation. The other eigenvalues describe the processes of fast relaxation and comprise the contributions from the relaxation processes in both micellar and premicellar regions of aggregate sizes. In the latter region of the spectrum, the contribution of the ultrafast relaxation can be numerically distinguished. The obtained result is confirmed by the analysis of the spectrum of relaxation times of premicellar aggregates, which are considered as a closed system. It is also shown that the spectrum of ultrafast relaxation times is mainly determined by the first diagonal elements of the matrix of the linearized Becker–Döring equations and can be described analytically.  相似文献   

9.
A molecular-thermodynamic theory is developed to model the micellization of fluorocarbon surfactants in aqueous solutions, by combining a molecular model that evaluates the free energy of micellization of fluorocarbon surfactant micelles with a previously developed thermodynamic framework describing the free energy of the micellar solution. In the molecular model of micellization developed, a single-chain mean-field theory is combined with an appropriate rotational isomeric state model of fluorocarbon chains to describe the packing of the fluorocarbon surfactant tails inside the micelle core. Utilizing this single-chain mean-field theory, the packing free energies of fluorocarbon surfactants are evaluated and compared with those of their hydrocarbon analogues. We find that the greater rigidity of the fluorocarbon chain promotes its packing in micellar aggregates of low curvatures, such as bilayers. In addition, the mean-field approach is utilized to predict the average conformational characteristics (specifically, the bond order parameters) of fluorocarbon and hydrocarbon surfactant tails within the micelle core, and the predictions are found to agree well with the available experimental results. The electrostatic effects in fluorocarbon ionic surfactant micelles are modeled by allowing for counterion binding onto the charged micelle surface, which accounts explicitly for the effect of the counterion type on the micellar solution properties. In addition, a theoretical formulation is developed to evaluate the free energy of micellization and the size distribution of finite disklike micelles, which often form in the case of fluorocarbon surfactants. We find that, compared to their hydrocarbon analogues, fluorocarbon surfactants exhibit a greater tendency to form cylindrical or disklike micelles, as a result of their larger molecular volume as well as due to the greater conformational rigidity of the fluorocarbon tails. The molecular-thermodynamic theory developed is then applied to several ionic fluorocarbon surfactant-electrolyte systems, including perfluoroalkanoates and perfluorosulfonates with added LiCl or NH(4)Cl, and various micellar solution properties, including critical micelle concentrations (cmc's), optimal micelle shapes, and average micelle aggregation numbers, are predicted. The predicted micellar solution properties agree reasonably well with the available experimental results.  相似文献   

10.
Monotonically decaying relaxation of a materially isolated nonionic surfactant solution containing spherical and cylindrical micelles at the arbitrary heights of the first and second potential barriers of aggregation work is kinetically substantiated. The realistic situation, where the height of second potential barrier is at least slightly higher (by the relative value) than that of the first barrier, is studied. Analytical expressions for two relaxation times of materially isolated surfactant solution are calculated. The shortest of these times corresponds to the relatively fast establishment of the mutual quasi-equilibrium of spherical and cylindrical micelles, beginning with relatively small cylindrical micelles. The longest of relaxation times corresponds to the relatively slow establishment of the total equilibrium of surfactant solution. It is shown that this time (the only significant for the establishment of the final equilibrium of materially isolated surfactant solution) is determined by the height of the first potential barrier of aggregation work and is by no means dependent on the height of the second potential barrier about which not much is known. Variations (with time) of the total concentrations of spherical and cylindrical micelles, surfactant monomer concentration, and the total amount of the substance in cylindrical micelles in the approach of solution to the final equilibrium state are described analytically. It is shown that theoretically admitted small relative deviations of the concentrations of spherical and cylindrical micelles from their values in the final equilibrium state are fully measurable in experiment. Calculated relaxation time of surfactant solution can also be measured experimentally together with the aforementioned values. It is elucidated that this time is approximately proportional to the overall solution concentration, if the second critical micellization concentration (CMC2) by the order of magnitude exceeds the first critical micellization concentration (CMC1), and is virtually independent of the overall solution concentration, if the CMC2 exceeds the CMC1 by two orders of magnitude. The characteristic time of the establishment of quasi-equilibrium distribution of cylindrical micelles throughout the region of their sizes is estimated, thus allowing us to establish the lower limit of the height of the first barrier of aggregation work.Translated from Kolloidnyi Zhurnal, Vol. 67, No. 1, 2005, pp. 47–56.Original Russian Text Copyright © 2005 by Kuni, Shchekin, Grinin, Rusanov.  相似文献   

11.
12.
General thermodynamic relations for the work of polydisperse micelle formation in the model of ideal solution of molecular aggregates in nonionic surfactant solution and the model of "dressed micelles" in ionic solution have been considered. In particular, the dependence of the aggregation work on the total concentration of nonionic surfactant has been analyzed. The analogous dependence for the work of formation of ionic aggregates has been examined with regard to existence of two variables of a state of an ionic aggregate, the aggregation numbers of surface active ions and counterions. To verify the thermodynamic models, the molecular dynamics simulations of micellization in nonionic and ionic surfactant solutions at two total surfactant concentrations have been performed. It was shown that for nonionic surfactants, even at relatively high total surfactant concentrations, the shape and behavior of the work of polydisperse micelle formation found within the model of the ideal solution at different total surfactant concentrations agrees fairly well with the numerical experiment. For ionic surfactant solutions, the numerical results indicate a strong screening of ionic aggregates by the bound counterions. This fact as well as independence of the coefficient in the law of mass action for ionic aggregates on total surfactant concentration and predictable behavior of the "waterfall" lines of surfaces of the aggregation work upholds the model of "dressed" ionic aggregates.  相似文献   

13.
Formuals for the thermodynamic characteristics of micellization in the droplet and quasi-droplet models of surfactant molecular aggregates are derived. These formulas account for the experimental data on the mean size of micelles and average statistical scatter of their sizes in the equilibrium state. These formulas cover critical micellization concentration corresponded to the onset of surfactant accumulation in micelles and higher (than CMC) concentrations at which micelles incorporate noticeable or even the largest portion of surfactant in micellar solution. Analytical dependence of thermodynamic characteristics of micellization on the initial parameters of droplet and quasi-droplet models of molecular aggregates at critical micellization concentration is disclosed.  相似文献   

14.
Theoretical results published in the last 17 years on the kinetics of aggregation and relaxation in micellar surfactant solutions have been reviewed. The results obtained by the analytical and direct numerical solution of the Becker–Döring kinetic equations and the Smoluchowski generalized equations, which describe different possible mechanisms of aggregation and relaxation on all time scales from ultrafast relaxation while reaching the quasi-equilibrium in the region of subcritical molecular aggregates to the last stage of slow relaxation of micelles to the final aggregated state, have been considered in detail. The droplet model and the model linear with respect to aggregation numbers have been used for the work of aggregation to describe the dynamics of the rearrangement of micellar systems consisting of only spherical, only cylindrical, and coexisting spherical and cylindrical aggregates, with the dynamics being both linear and nonlinear with respect to deviations from equilibrium. The results of molecular simulation of the rearrangement kinetics of micellar systems subjected to initial disturbance have been reviewed.  相似文献   

15.
Aggregation behavior of dodecyldimethyl-N-2-phenoxyethylammonium bromide commonly called domiphen bromide (DB) was studied in aqueous solution. The Krafft temperature of the surfactant was measured. The surfactant has been shown to form micellar structures in a wide concentration range. The critical micelle concentration was determined by surface tension, conductivity, and fluorescence methods. The conductivity data were also employed to determine the degree of surfactant counterion dissociation. The changes in Gibb's free energy, enthalpy, and entropy of the micellization process were determined at different temperature. The steady-state fluorescence quenching measurements with pyrene and N-phenyl-1-naphthylamine as fluorescence probes were performed to obtain micellar aggregation number. The results were compared with those of dodecyltrimethylammonium bromide (DTAB) surfactant. The micelle formation is energetically more favored in DB compared to that in DTAB. The 1H-NMR spectra were used to show that the 2-phenoxyethyl group, which folds back onto the micellar surface facilitates aggregate formation in DB.  相似文献   

16.
Analytical expressions for the direct and reverse fluxes of molecular aggregates over the first and second potential barriers of the aggregation work in the presence of spherical and cylindrical micelles in non-ionic surfactant solution were derived. Expressions for the sum (entering into kinetic equations of micellization) of direct and reverse fluxes of molecular aggregates over the first and second potential barriers of the aggregation work in the vicinity of the final equilibrium state of materially isolated surfactant solution were linearized. In the experimentally important range of the values of overall surfactant concentration in solution where the predominant contribution to the total surfactant amount is introduced by cylindrical micelles, we derived a closed system of two linearized relaxation equations determining the buildup (with time) of experimentally observed total concentrations of spherical and cylindrical micelles in the vicinity of the final equilibrium state of materially isolated surfactant solution. The case of the solutions of such surfactants, for which the spherical shape of a micelle appeared to be unrealizable due to the structure and packing conditions of molecules, was considered separately.Translated from Kolloidnyi Zhurnal, Vol. 67, No. 1, 2005, pp. 38–46. Original Russian Text Copyright © 2005 by Kuni, Shchekin, Rusanov, Grinin.  相似文献   

17.
18.
Based on the general kinetic equation that describes the aggregation and fragmentation of surfactant molecular aggregates, a closed set of nonlinear equations is derived for the slow relaxation of surfactant monomer concentration and the total concentrations of coexisting spherical and cylindrical micelles to the equilibrium state of a micellar solution. Both the transitions accompanied by the emission and capture of surfactant monomers by micelles and the transitions resulting from the fussion and fission of micelles, are taken into account. The derived set of equations describes all stages of the slow relaxation from the initial perturbance to the final equilibrium state of a micellar solution.  相似文献   

19.
Dynamics of self-assembly and structural transitions in surfactant systems often involve a large span of length and time scales. A comprehensive understanding of these processes requires development of models connecting phenomena taking place on different scales. In this paper, we develop a multiscale model for formation and disintegration of spherical nonionic micelles. The study is performed under the assumption that the dominant mechanism of micelle formation (disintegration) is a stepwise addition (removal) of single monomers to (from) a surfactant aggregate. Different scales of these processes are investigated using a combination of coarse-grained molecular dynamics simulations, analytical and numerical solution of stochastic differential equations, and a numerical solution of kinetic equations. The removal of a surfactant from an aggregate is modeled by a Langevin equation for a single reaction coordinate, the distance between the centers of mass of the surfactant and the aggregate, with parameters obtained from a series of constrained molecular dynamics simulations. We demonstrate that the reverse process of addition of a surfactant molecule to an aggregate involves at least two additional degrees of freedom, orientation of the surfactant molecule and micellar microstructure. These additional degrees of freedom play an active role in the monomer addition process and neglecting their contribution leads to qualitative discrepancies in predicted surfactant addition rates. We propose a stochastic model for the monomer addition which takes the two additional degrees of freedom into account and extracts the model parameters from molecular dynamics simulations. The surfactant addition rates are determined from Brownian dynamics simulations of this model. The obtained addition and removal rates are then incorporated into the kinetic model of micellar formation and disintegration.  相似文献   

20.
A numerical simulation of the relaxation process of surfactant micellar solution to a new equilibrium state is performed using model analytical representations for the main characteristics of micellar aggregates. Relaxation stages of molecular aggregate size distribution in the typical regions of aggregation number variations predicted by the analytical theory in two-flux approximation are revealed. Good agreement between the predicted values of the relaxation times of micellar solution and those obtained in numerical simulation is disclosed within the domain of applicability of two-flux approximation. Numerical algorithm proposed in this work makes it possible to study the relaxation process of micellar solution even in the case when two-flux approximation becomes inapplicable. The realization of numerical algorithm can be considered as a kind of experiment for studying the relaxation process of a model micellar solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号