首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel series of 17-membered complexes [MLCl2] (M = Co2+, Ni2+ and Cu2+) have been synthesized with newly derived biologically active ligands (LI–LIV). These ligands were synthesized by the condensation of 3-subtituted-4-amino-5-hydrazino-1,2,4-triazole with bis(phthalaldehyde)ethylenediamine precursor. The structure of the complexes has been proposed by elemental analyses, IR, EPR, electronic spectral studies, conductivity, magnetic, thermal and electrochemical studies. All the complexes are soluble in DMF and DMSO and are non-electrolytes. All these Schiff bases and their complexes have been screened for their antibacterial (Escherichia coli, Staphylococus aureus, Salmonella typhi, Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Aspergillus flavus and Cladosporium) by the Agar and Potato dextrose agar diffusion method. The DNA cleavage study was done by Agarose gel electrophoresis technique.  相似文献   

2.
A series of Co(II), Ni(II), and Cu(II) complexes ML?·?3H2O have been synthesized with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazole and 5-formyl-6-hydroxy coumarin. The complexes are insoluble in common organic solvents but soluble in DMF and DMSO. The measured molar conductance values in DMF indicate that the complexes are non-electrolytes. In view of analytical, spectral (infrared, UV-Vis, ESR, TG, and FAB-mass), and magnetic studies, it has been concluded that all the metal complexes possess octahedral geometry in which ligand is coordinated to metal through azomethine nitrogen, phenolic oxygen, and sulfur via deprotonation. The Schiff bases and their complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by the minimum inhibitory concentration method. DNA cleavage is studied by agarose gel electrophoresis.  相似文献   

3.
A series of metal complexes of cobalt(II), nickel(II), copper(II), and zinc(II) have been synthesized with newly-derived biologically active ligands. These ligands were synthesized by condensation of 3-substituted-4-amino-5-hydrazino-1,2,4-triazole and orthophthalaldehyde. The probable structure of the complexes has been proposed on the basis of elemental analyses and spectral (IR, 1H-NMR, UV-vis, magnetic, ESR, FAB-mass and thermal studies) data. Electrochemical study of the complexes is also made. All complexes are nonelectrolytes in N,N-dimethyl formamide and DMSO. The Schiff bases and their Co(II), Ni(II), Cu(II), and Zn(II) complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Streptococcus pyogenes, and Pseudomonas aeruginosa) and antifungal (Aspergillus niger, Aspergillus flavus, and cladosporium) activities by minimum inhibitory concentration method. DNA cleavage is also carried out.  相似文献   

4.
New Zn(II) complexes have been synthesized by the reactions of zinc(II) acetate with Schiff bases derived from 3-substituted phenyl-4-amino-5-hydrazino-1, 2, 4-triazole and benzaldehyde, 2-hydroxyacetophenone or indoline-2,3-dione. All these complexes are soluble in DMF and DMSO; low molar conductance values indicate that they are non-electrolytes. Elemental analyses suggest that the complexes have 1:1 stoichiometry of the type [ZnL(H(2)O)(2)], [ZnL'(OAc)(2)(H(2)O)(2)] (L=dianionic Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1, 2, 4-triazole and 2-hydroxyacetophenone or indoline-2,3-dione; L'=neutral Schiff bases derived from 3-(substituted phenyl)-4-amino-5-hydrazino-1, 2, 4-triazole and benzaldehyde) and they were characterized by FT-IR, (1)H NMR, (13)C NMR and FAB mass. All these Schiff bases and their complexes have also been screened for their antibacterial activities against Bacillus subtilis, Escherichia coli and antifungal activities against Colletotrichum falcatum, Aspergillus niger, Fusarium oxysporium and Carvularia pallescence by petriplates methods.  相似文献   

5.
Some lanthanum(III) complexes have been synthesized by reacting lanthanum(III) nitrate with Schiff bases derived from 3-substituted-4-amino-5-hydrazino-1,2,4-triazole and substituted salicylaldehydes. All these complexes are soluble in DMF and DMSO and the low molar conductance values observed indicates that they are non-electrolytes. Elemental analyses suggest the complexes have 1:1 stoichiometry of the type La · L · NO3 · H2O, and they were characterized further by spectral and thermogravimetric methods. Fluorescence spectra of one of the representative Schiff bases (II) and its lanthanum(III) complex were investigated in various solvents; the complexes were evaluated for their biological activity.  相似文献   

6.
The Schiff bases (imines) HL1 and HL2 have been synthesized by the reaction of 5-bromothiophene-2-carboxaldehyde with 4-amino-5-mercapto-1,2,4-triazole and 4-amino-3-ethyl-5-mercapto-1,2,4-triazole, respectively. Organosilicon(IV) and organotin(IV) complexes having the general formulae R2MCl(L1), R2MCl(L2), R2M(L1)2, R2M(L2)2, (M = Si, Sn; R = CH3) were synthesized by the reaction of R2MCl2 with these Schiff bases in 1:1 and 1:2 molar ratio. The Schiff bases and their metal complexes have been characterized with the aid of elemental analyses, molar conductance, and spectroscopic studies, including UV, IR, 1H, 13C, MS, 29Si, and 119Sn NMR spectroscopy. On the basis of these studies, the resulting complexes have been proposed to have trigonal bipyramidal and octahedral geometries. In vitro activities of the Schiff bases and their metal complexes against some Gram positive and Gram negative bacteria and fungi have been carried out and described.  相似文献   

7.
A series of Co(II) complexes have been synthesized with Schiff bases derived from 3-substituted-4-amino-5-hydrazino-1,2,4-triazole and substituted salicylaldehydes. These complexes are insoluble in water but more soluble in DMF and DMSO. The complexes have been characterized by elemental analyses, spectral (IR, UV–Vis, 1H-NMR, FAB-mass, fluorescence), magnetic, thermal, solid-state DC electrical conductivity and molar conductance data. The molar conductivity values indicate that they are non-electrolytes. The elemental analyses of the complexes suggest a stoichiometry of the type Co · L1–L16 · 2H2O. The complexes have been considered as semiconductors on the basis of the solid-state DC electrical conductivity data. Fluorescence spectra of one Schiff base and its complex were investigated in various solvents and some of the Schiff bases and their complexes were evaluated for their antimicrobial activities.  相似文献   

8.
A series of cobalt(II), nickel(II) and copper(II) complexes have been synthesized with Schiff bases derived from 3-substituted-4-amino-5-mercapto-1,2,4-triazole and indole-3-aldehyde in ethanol. These complexes have been characterized by elemental analyses, magnetic, spectroscopic (IR, UV-Vis, H-NMR, ESR, FAB-mass), thermal, electrochemical (CV) and solid state d.c. electrical conductivity studies. The elemental analyses confirm 1 : 2 stoichiometry of the type ML2·2H2O (M = Co/Ni) and ML2 (M=Cu). The complexes are colored solids and non-electrolytes in DMF and DMSO. Magnetic and spectral data suggest octahedral geometry for Co(II) and Ni(II) complexes and square-planar geometry for Cu(II) complexes. The presence of coordinated water in Co(II) and Ni(II) complexes was confirmed by thermal and IR data of the complexes. The complexes are insoluble in water and common organic solvents and decompose at higher temperature. All these ligands and their complexes have also been screened for antibacterial (Bacillus cereus, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger and Aspergillus fumigates) by the cup plate method.  相似文献   

9.
The new complexes, M(CO)5(Schiff base) [M?=?Cr; 1, Mo; 2, W; 3, Schiff base?=?4-salicylidenamino-3-hydrazino-5-mercapto-1,2,4-triazole, SAHMT, a; 4-(2-hydroxynaphthylidenamino)-3-hydrazino-5-mercapto-1,2,4-triazole, 2HNAHMT, b; 4-(3-hydroxybenzylidenamino)-3-hydrazino-5-mercapto-1,2,4- triazole, 3HBAHMT, c; 4-(4-hydroxybenzylidenamino)-3-hydrazino-5-mercapto-1,2,4- triazole, 4HBAHMT, d; 4-(5-bromosalicylidenamino)-3-hydrazino-5-mercapto-1,2,4-triazole, 5BrSAHMT, e; were synthesized by photochemical reaction of metal carbonyls M(CO)6 (M?=?Cr, Mo, W) with new heterocyclic Schiff bases derived from 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, ae. The ligands and complexes have been characterized by elemental analysis, EI-mass spectrometry, FT-IR, 1H and 13C-{1H}-NMR spectroscopy. The spectroscopic studies show that Schiff bases, ae, are monodentate and coordinate via azomethine N donor to the central metal atom in M(CO)5(Schiff base) (M?=?Cr, Mo, W).  相似文献   

10.
Co(II), Ni(II), and Cu(II) complexes, ML2 · 2H2O have been synthesized with Schiff bases derived from m-substituted thiosemicarbazides and 2-methoxy benzaldehyde. The complexes are soluble in DMF/DMSO and non-electrolytes. From analytical, spectral (IR, UV-Vis, ESR, and FAB-mass), magnetic and thermal studies octahedral geometry is proposed for the complexes. The redox behavior of the complexes was investigated using cyclic voltammetry. The Schiff bases and their metal complexes have been screened for antibacterial (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella typhi) and antifungal activities (Aspergillus niger, Aspergillus flavus, and Cladosporium) by Minimum Inhibitory Concentration method. DNA cleavage is studied by agarose gel electrophoresis method.  相似文献   

11.
Schiff base metal complexes of Cr(III), Co(II), Ni(II) and Cu(II) derived from 5-chlorosalicylidene-2-amino-5-methylthiazole (HL1) and 2-hydroxy-1-naphthylidene-2-amino-5-methylthiazole (HL2) have been synthesized by conventional as well as microwave methods. These compounds have been characterized by elemental analysis, FT-IR, FAB-mass, molar conductance, electronic spectra, 1H-NMR, ESR, magnetic susceptibility, thermal, electrical conductivity and XRD analyses. The complexes exhibit coordination number 4 or 6. The complexes are coloured and stable in air. Analytical data reveal that all the complexes exhibit 1:2 (metal:ligand) ratio. IR data show that the ligand coordinates with the metal ions in a bidentate manner through the phenolic oxygen and azomethine nitrogen. FAB-mass and thermal data show degradation pattern of the complexes. The thermal behaviour of metal complexes shows that the hydrated complexes lose water molecules of hydration in the first step; followed by decomposition of ligand molecules in the subsequent steps. XRD patterns indicate crystalline nature for the complexes. The Schiff bases and metal complexes show good activity against the Gram-positive bacteria; Staphylococcus aureus and Gram-negative bacteria; Escherichia coli and fungi Aspergillus niger and Candida albicans. The antimicrobial results also indicate that the metal complexes are better antimicrobial agents as compared to the Schiff bases.  相似文献   

12.
In the present study two new series of Copper(II), Nickel(II) and Cobalt(II) complexes with two newly synthesized Schiff base ligands 4,6-bis(1-(4-bromophenylimino)ethyl)benzene-1,3-diol (H2L1), 4,6-bis(1-(4-methoxyphenylimino) ethyl)benzene-1,3-diol (H2L2) and organic ligands 8-hydroxy quinoline, 1,10-phenanthroline have been prepared. The Schiff bases H2L1 and H2L2 ligands were synthesized by the condensation of 4,6-diacetyl resorcinol with 4-bromo aniline and 4-methoxy aniline. The ligands and their metal complexes have been characterized by FT-IR, Mass, 1H NMR, UV–Vis., elemental analysis, ESR and Thermal gravimetric analysis. The Schiff base and their metal complexes were tested for antimicrobial activity against gram positive bacteria Staphylococcus aureus, Streptococcus pyogenes and gram negative bacteria Escherichia coli, Pseudomonas aeruginosa and fungus Candida albicans, Aspergillus niger and Aspergillus clavatus using Broth Dilution Method.  相似文献   

13.
A series of neodymium(III) and samarium(III) complexes of type [Ln(L)Cl(H2O)3] have been synthesized with Schiff bases (LH2) derived from 3‐(phenyl/substituted phenyl)‐4‐amino‐5‐mercapto‐1,2,4‐triazoles and isatin. The structures of the complexes were established using elemental analysis, molar conductivities, magnetic moments, infrared, NMR (1H, 13C) and UV–visible spectra, X‐ray diffraction and mass spectrometry. The thermal behaviour of these compounds under non‐isothermal conditions was investigated using thermogravimetry and differential thermogravimetry. The intermediates obtained at the end of various thermal decomposition steps were identified from elemental analysis and infrared spectral studies. All the ligands and their complexes were also screened for their antibacterial activity against Staphylococcus aureus and Bacillus subtilis and antifungal activity against Aspergillus niger, Aspergillus flavus and Colletotrichum capsici. The screening results were correlated with the structural features of the compounds. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Metal complexes of La(III), Ce(IV), and Th(IV), with the amino Schiff base ligand, [N-(2-hydroxybenzyl)-l-methionine acid](H3L), were prepared in the presence of triethylamine as a deprotonating agent. All synthesized compounds were identified and confirmed by mass spectra, elemental analyses, molar conductivities, and spectral analyses (UV–Visible, IR, 1H NMR, and 13CNMR). Conductance measurements suggest the non-electrolytic nature and the complexes were isolated in 1:1 ratios. The thermal decomposition of the complexes was discussed in relation to structure. The data from thermogravimetric analysis clearly indicated that the decomposition of the complexes proceeds in four or five steps and the organic part of the complexes decomposed in one or two intermediates. The decomposition of all complexes ended with metal oxide and carbon residue. The Schiff bases and their complexes were screened for their antibacterial (Escherichia coli, Staphylococcus aureus) and antifungal (Aspergillus flavus and Candida Albicans) activities.  相似文献   

15.
Some new organotin(IV) complexes having general formulae R2MCl[L] and R2M[L]2 were synthesized by the reactions of Me2MCl2 with Schiff bases [5-Mercapto-4-(pyrrolcarboxalideneamino)-s-triazole, 5-Mercapto-3-methyl-4-(2-pyrrolcarboxalideneamino)- s-triazole, 3-Ethyl-5-mercapto-4-(2-pyrrolcarboxalideneamino)-s-triazole] in 1:1 and 1:2 molar ratios. All of the compounds were characterized by elemental analysis, molar conductance, IR, UV, 1H, 13C and 119Sn NMR spectral studies. The IR and 1H NMR spectral data suggest the involvement of azomethine nitrogen in coordination with the central metal atom. With the help of the above-mentioned spectral studies, penta and hexacoordinated environments around the central metal atoms in the 1:1 and 1:2 complexes, respectively, have been proposed. Finally, the free ligands and their metal complexes were tested in vitro against some pathogenic bacteria and fungi to assess their antimicrobial properties.  相似文献   

16.
Two new Schiff base ligands with chromone moiety and their transition metal complexes were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conductance and TGA analyses, FT IR, UV-Vis, NMR and mass spectroscopy. All the complexes synthesized have been investigated as functional models for catechol oxidase (catecholase) activity by employing 3,5-di-tert-butylcatechol as a model substrate. The two mononuclear copper(II) and two mononuclear iron(II) complexes show catecholase activity with turnover (kcat) numbers lying in the range 27.2–1328.4 h?1. According to the kinetic measurement results, the rate of catechol oxidation follows first order kinetics and iron(II) complexes were found to have higher catalytic activity than those of copper(II) complexes. Electron-donating substituent on Schiff base ligand enhanced the catalytic activity of metal complexes while the electron-withdrawing substituent led to a decrease in activity. The electrochemical properties of two Schiff bases and their metal complexes were also investigated by Cyclic Voltammetry (CV) using glassy carbon electrode (GCE) at various scan rates. Electrochemical processes of all the compounds were observed as irreversible.  相似文献   

17.
New Schiff bases have been synthesized from benzofuran-2-carbohydrazide and benzaldehyde, [BPMC] or 3,4-dimethoxybenzaldehyde, [BDMeOPMC]; complexes of the type MLX2, where M = Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II), L = BPMC or BDMeOPMC and X = Cl, have been prepared. Structures have been elucidated on the basis of elemental analysis, conductance measurements, magnetic properties, spectral studies i.e., 1H NMR, electronic, ESR and IR studies show that the Schiff bases are bidentate through the azomethine nitrogen and oxygen of the carbonyl. We propose tentative structures for all of these complexes. The antifungal and antibacterial activities of the ligands and their metal complexes have been screened against fungi Aspergillus niger and Aspergillus fumigatus and against bacteria Escherichia coli and S. aurious.  相似文献   

18.
A novel series of N2O2 diazadioxa macrocyclic complexes [MLCl2] (M=Co2+, Ni2+ and Cu2+) have been synthesized with newly derived biologically active ligands (LI-LIV). These ligands were synthesized by the condensation of 1, 6-bis(2-formylphenyl)hexane and 3-subtituted-4-amino-5-hydrazino-1, 2, 4-triazole. The mode of bonding and overall geometry of the complexes have been inferred through IR, EPR, electronic spectral studies, conductivity, magnetic, thermal and electrochemical studies. All the complexes are soluble in DMF and DMSO and are non-electrolytes. All these complexes have been screened for their antibacterial (Escherichia coli, Staphylococus aureus, Salmonella typhi, Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Aspergillus flavus and Cladosporium) by the MIC method. The DNA cleavage study was done by Agarose gel electrophoresis.  相似文献   

19.
In order to develop new metallo-antimicrobials the complexes of type MLCl·nH2O ((1) M: Co, n = 0; (2) M: Ni, n = 2; (3) M: Cu, n = 2.5; (4) M: Zn, n = 0, HL: Schiff base derived from acetylacetone and 3-amino-4H-1,2,4-triazole) were synthesized by template condensation. The features of complexes have been assigned from microanalytical, IR and UV–Vis-NIR data. The species heating in air evidenced processes as melting, water and hydrochloride endothermic elimination as well as oxidative degradation of the Schiff base. The temperature ranges as well as modification in the electronic spectra of dehydrated intermediates indicate the presence of both coordination and crystallisation water molecules. The final product of decomposition was the most stable metal oxide as powder X-ray diffraction indicated.  相似文献   

20.
A series of metal complexes of Co(II), Ni(II) and Cu(II) have been synthesized with the Schiff base derived from thiocarbohydrazide and 8-formyl-7-hydroxy-4-methylcoumarin. The structures of the complexes have been proposed by elemental analyses, molar conductance, spectral (IR, UV-Vis, ESR and FAB-mass), magnetic, thermal and electrochemical studies. These complexes are soluble in DMF and DMSO and molar conductance values indicate that they are non-electrolytes. Elemental analyses of the complexes confirm stoichiometry ML ·; 2H2O [M=Co(II), Ni(II) and Cu(II)]. Spectroscopic studies indicate coordination occurs through phenolic oxygen after deprotonation and nitrogen of azomethine. The Schiff base and its complexes have also been screened for antibacterial (Escherichia coli, Streptococcus aureus, Streptococcus pyogenes and Pseudomonas aeruginosa) and antifungal activities (Aspergillus niger, Aspergillus flavus and cladosporium) by the MIC method. The brine shrimp bioassay was also carried out to study their in vitro cytotoxic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号