首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The apolipoproteins (APOs) of human very low-density lipoprotein (VLDL) were investigated by an optimized cyclodextrin-micellar electrokinetic chromatography (CD-MEKC) method. The separation buffer consisted of 20 mM sodium phosphate, 40 mM bile salts (50% sodium cholate and 50% sodium deoxycholate), 25 mM carboxymethyl-β-cyclodextrin (CM-β-CD) (pH 7.0). For CD-MEKC separation, a sample injection time of 12 s, a separation voltage of 15 KV, and a capillary temperature of 15°C were chosen. The optimal CD-MEKC method showed good resolution and repeatability for VLDL APOs. Identification and quantitation of VLDL APOs CI, CIII, and E were based on comparison with human APO standards. Good linear relationships with correlation coefficient (R2) 0.99 were obtained for APOs CI, CIII, and E standards. For these three APOs, the linear ranges were within 0.01-0.54 mg/mL, and the concentration limits of detection (LODs) were lower than 0.02 mg/mL. Moreover, VLDL APOs from four uremic patients and four healthy subjects were compared. The uremic and healthy CD-MEKC profiles showed dramatic difference. The levels of APO CIII were significantly higher for two patients, and the level of APO E was significantly higher for one patient. This study might be helpful for following the disease development of uremia and cardiovascular disease (CVD) in the future.  相似文献   

2.
A capillary electrophoresis (CE) and a high performance liquid chromatography (HPLC) method are described for the simultaneous determination of ethylenediaminetetraacetic acid (EDTA), S,S′-ethylenediaminedisuccinic acid (EDDS) and R,S-iminodisuccinic acid (IDS) complexing agents as their Fe(III) complexes in cosmetics like shower cream and foam bath. The non-biodegradable EDTA is used in combination with biodegradable analogues like EDDS and IDS in many commercial products. The HPLC method involves separation by reversed-phase ion pair chromatography on a C18 column using methanol-formate buffer (20 mM tetrabutylammonium hydrogen sulfate, 15 mM sodium formate adjusted to pH 4.0 with formic acid) (10:90, v/v) as mobile solvent at a flow rate of 0.8 mL min−1 at 24 °C using UV detection at 240 nm. The CE separation was performed in a fused silica capillary of 50 μm i.d. with the total length of 50 cm with a 10 mM MES and MOPSO (pH 5.5) at an applied voltage of −25 kV. The samples were introduced by applying a 50 mbar pressure for 2 s. Absorbances at 215 and 225 nm were monitored for the detection of the complexes. The methodology performance of the two methods was evaluated in terms of linearity, limit of detection (LOD), limit of quantitation (LOQ) and reproducibility. The LOD values obtained from HPLC are low when compared with CE. The applicability of both the methods was demonstrated for the analysis of cosmetic products such as shower cream and foam bath. The results obtained by both CE and HPLC were found to be comparable and in good agreement.  相似文献   

3.
Two procedures are proposed in this work for the determination of methanol impurities in o,o-dimethyldithiophosphoric acid (DMDTPA). To avoid possible interferences from the main component, DMDTPA was precipitated in the form of insoluble lead complex. Free Pb(II) ions were eliminated with sulfuric acid and methanol was oxidized to formaldehyde with potassium permanganate in methanesulfonic acid medium. Finally, the excess of oxidizing agent was neutralized with saturated sodium oxalate. The above pretreatment procedure was identical for spectrophotometric assay and for chromatographic determination. In the first case, the solution obtained was treated with Nash reagent to form 3,5-diacetyl-1,4-dihydrolutidine (λmax = 415 nm). In the calibration range 0.1-1.0% (methanol in DMDTPA), the analytical figures of merit were: R2 = 0.9993, quantification limit 0.02% methanol in DMDTPA coefficient of variance (n = 5) for 0.1% and 0.4% methanol respectively 6.7% and 2.4%. Recoveries obtained in the sample fortified with 0.1, 0.2, 0.4% of methanol (in DMDTPA) were in the range 99-105%. For chromatographic procedure, formaldehyde was derivatized with 2,4-dinitrophenylhydrazine and separation was achieved on Luna C18(2) column using the isocratic elution with acetonitrile-water (70:30, v/v) and spectrophotometric detection at 360 nm. In the calibration range 0.05-0.25% (methanol in DMDTPA), R2 was always higher than 0.999, the quantification limit was 0.004% and the recoveries in these same fortified samples in the range 98-101%. No statistically significant differences were observed between the results obtained in the analysis of technical grade DMDTPA by the two procedures (ANOVA, p < 0.05)  相似文献   

4.
A cyclodextrin-modified micellar electrokinetic chromatographic (CD-MEKC) method for the determination of the most important potential impurities of methotrexate (MTX): 2,4-diamino-6-(hydroxymethyl)pteridine, aminopterine hydrate, 4-[N-(2-amino-4-hydroxy-6-pteridinylmethyl)-N-methylamino] benzoic acid, 4-[N-(2,4-diamino-6-pteridinylmethyl)-N-methylamino] benzoic acid, and the distomer D-MTX is presented. The MEKC separation of these compounds was optimized by applying a step-by-step approach. The addition of beta-CD to a conventional MEKC system, based on sodium dodecyl sulfate (SDS) as surfactant, showed to be essential for the enantioresolution of racemic MTX as well as for the separation of the achiral impurities. To achieve high-resolution factor between the peaks adjacent to the main component (L-MTX), as required in the analysis of related impurities, the separation conditions were stressed; in particular, the addition of methanol to the CD-MEKC system resulted in a very effective choice. Under the optimized final conditions (100 mM SDS and 45 mM beta-CD in a mixture of 50 mM borate buffer, pH 9.30-methanol (75:25 v/v)), the method was validated showing a general adequate accuracy (93-106% recovery) in the determination of L-MTX related substances at the impurity level of 0.12% w/w with a relative standard deviation (RSD)% lower than 8% (n = 4). The method was successfully applied to the analysis of pharmaceuticals (tablets and injections) which showed to contain the distomer D-MTX as major impurity and aminopterine hydrate as a further related substance in the commercial tablets.  相似文献   

5.
A new LC method has been developed and validated for the direct determination of bupropion and its main metabolite, hydroxybupropion in human plasma. Plasma samples were analyzed after a simple, one step protein precipitation with trichloroacetic acid using a C8 column and mobile phase, consisting of methanol/acetonitrile/phosphate buffer (10 mM, pH 3.0) (40:10:50, v/v/v) and 20 mM 1-heptane sulfonic acid sodium salt with carbamazepine as the internal standard. UV detection was performed at 214 and 254 nm. The method was validated over the concentration range of 60–2,400 and 150–4,700 ng mL?1 for bupropion and hydroxybupropion, respectively. The intra- and inter-day assay variability was less than 15% for the two analytes. Limit of detection values were 24.8 and 63.4 ng mL?1 for bupropion and hydroxybupropion, respectively. The method developed was applied to quantification of bupropion and hydroxybupropion in human plasma.  相似文献   

6.
A microemulsion electrokinetic chromatographic method was used to separate fat-soluble vitamins. The separation of retinol, cholecalciferol, and delta- and alpha-tocopherol was performed using a microemulsion containing 0.75% (v/v) n-heptane, 30 mM bis(2-ethylhexyl)sodium sulfosuccinate (AOT), 5% (v/v) 1-butanol, 15% (v/v) 1-propanol and 15% (v/v) methanol in 20mM boric acid-sodium borate buffer. The effect of the different microemulsion constituents was studied, including the type and concentration of surfactant, buffer, oil and co-surfactants. The presence of methanol in the microemulsion was found to be necessary to achieve the separation of the tocopherols. Detection was carried out at 200, 265 and 325 nm for the tocopherols, cholecalciferol and retinol, respectively. Calibration curves and precision data were obtained for each analyte. Good linear relationships were found between the analytical signal and the analytes concentration in the 25-500 mg L(-1) for retinol and cholecalciferol, and 25-300 mg L(-1) for tocopherols ranges. The precision of the method afforded relative standard deviations in the 4.0-10% range.  相似文献   

7.
In order to differentiate two species of Radix Puerariae (Radix Puerariae lobatae and Radix Puerariae thomsonii) and to determine major isoflavonoids (puerarin, daidzin, daidzein and genistein) in the samples, a simple high performance liquid chromatography (HPLC) method with isocratic elution employing cyclodextrins (CDs) as mobile phase additives was developed. Various factors affecting the retention of isoflavonoids in the C18 reversed-phase column, such as the nature of CDs, the concentration of hydroxypropyl-β-cyclodextrin (HP-β-CD) and the methanol percentage in the mobile phase, were studied. Experimental results confirmed that HP-β-CD, as a very effective mobile phase additive, could markedly reduce the retention of isoflavonoids, especially daidzein and genistein. The elution of four isoflavonoids could be achieved on a Kromasil® C18 column within 56 min by using the methanol–water contained 5 mM HP-β-CD (25/75, v/v) mixture as the mobile phase. The formation of the inclusion complexes between isoflavonoids and HP-β-CD explained the modification of the retention of analytes. The apparent formation constants determined by HPLC confirmed that the stoichiometry of HP-β-CD-isoflavonoid complexes was 1:1, and the stability of the complexes depended on the size and property of isoflavonoids. The optimized method was successfully applied for the simultaneous determination of major isoflavonoids in P. lobatae and P. thomsonii samples. This work provides a useful method for the analysis of traditional Chinese herbs.  相似文献   

8.
A high-performance liquid chromatographic method was developed for separation of the furochromone fraction and for determination of visnagin inAmmi visnagahairy root cultures. Lyophilized samples were extracted with chloroform:methanol (1:1, v/v) and purified on solid-phase extraction cartridges. HPLC analyses were performed on a Eurospher 100-C8Knauer column and the mobile phase was 29:28:526:417 (v/v/v/v) acetonitrile:tetrahydrofuran:30 mM citric acid (pH 3.0):methanol. Quercetin was used as internal standard. Peaks were identified by addition of authentic standards and/or by diode-array detection.  相似文献   

9.
Heon-Woo Lee 《Talanta》2007,71(1):62-67
A simple, rapid, and sensitive high-performance liquid chromatography (HPLC)-electrospray ionization (ESI) tandem mass spectrometric method (LC-MS/MS) has been developed for simultaneous determination of cilazapril levels and its active metabolite, cilazaprilat, in human plasma using enalapril as internal standard. The acquisition was performed in the multiple reaction monitoring mode; monitoring the transitions: m/z 418.4 > 211.1 for cilazapril and m/z 390.3 > 211.1 for cilazaprilat. The method involves a simple single-step liquid-liquid extraction with ethyl acetate. The analyte was chromatographed on an YMC C8 reversed-phase chromatographic column by isocratic elution with 10 mM ammonium formate buffer-methanol (10:90, v/v; pH 3.2 with formic acid). Numerous compounds did not interfere with specific multiple reaction monitoring in tandem mass spectrometric detection following C8 reversed-phase chromatographic separation under conditions that eluted cilazapril, cilazaprilat, and enalapril within 2 min. This method was validated over 0.1-500 ng ml−1 of cilazapril and 0.5-50 ng ml−1 of cilazaprilat. Cilazapril and cilazaprilat were stable in standard solution and in plasma samples under typical storage and processing conditions. The assay was successfully applied to a pharmacokinetic study of cilazapril given as a single oral dose (5 mg) to healthy volunteers.  相似文献   

10.
Simple, sensitive, selective, precise, and stability-indicating thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) methods for the determination of mosapride and pantoprazole in pharmaceutical tablets were developed and validated as per the International Conference on Harmonization guidelines. The TLC method employs aluminum TLC plates precoated with silica gel 60F254 as the stationary phase and ethyl acetate/methanol/toluene (4:1:2, v/v/v) as the mobile phase to give compact spots for mosapride (R f 0.73) and pantoprazole (R f 0.45) separated from their degradation products; the chromatogram was scanned at 276 nm. The HPLC method utilizes a C18 column and a mobile phase consisting of acetonitrile/methanol/20 mM ammonium acetate (4:2:4, v/v/v) at a flow rate of 1.0 mL min?1 for the separation of mosapride (t R 11.4) and pantoprazole (t R 4.4) from their degradation products. Quantitation was achieved with UV detection at 280 nm. The same HPLC method was successfully used in performing calibrations in lower concentration ranges for both drugs in human plasma using ezetimibe as internal standard. The methods were validated in terms of accuracy, precision, linearity, limits of detection, and limits of quantification. Mosapride and pantoprazole were exposed to acid hydrolysis and then analyzed by the proposed methods. As the methods could effectively separate the drugs from their degradation products, these techniques can be employed as stability-indicating methods that have been successively applied to pharmaceutical formulations without interference from the excipients. Moreover the HPLC method was successfully used in the determination of both drugs in spiked human plasma.  相似文献   

11.
Chen L  Yu A  Zhuang X  Zhang K  Wang X  Ding L  Zhang H 《Talanta》2007,74(1):146-152
The high-performance liquid chromatography (HPLC) coupled with on-line solid phase extraction (SPE) and ultraviolet (UV) detection was developed for determining andrographolide and dehydroandrographolide in rabbit plasma. Plasma samples (100 μL) were injected directly into a C18 SPE column and the biological matrix was washed out for 6 min using 15% aqueous methanol. By rotation of the switching valve, andrographolide and dehydroandrographolide were eluted in the back-flush mode and transferred to the analytical column by the chromatographic mobile phase consisted of methanol:acetonitrile (ACN):water (50:10:40; v/v). The UV detection was performed at 225 nm. The calibration curves showed excellent linear relationship (R ≥ 0.9993) over the concentration range of 0.05-5.0 μg mL−1. The within- and between-day precisions (R.S.D.) of two analytes were in the range of 1.2-6.5% and the accuracies were between 92.0% and 102.1%. Their recoveries were all greater than 94%. The limits of detection were 0.019 μg mL−1 for andrographolide and 0.022 μg mL−1 for dehydroandrographolide. This method was successfully applied to the plasma concentration-time curve study after oral administration of Andrographis paniculata Nees extract in rabbit.  相似文献   

12.
In the present work, an analytical method for determination of risedronate, a member of bisphosphonates, is described for the routine analysis in rat plasma. Sample pre-treatment involves protein precipitation, co-precipitation with calcium at alkaline pH, hydrolysis of possible derivatives of pyrophosphate and reprecipitation. A good separation was obtained by using a reversed-phase column (Hypersil ODS-2 C18, 4.6 mm × 250 mm, 5 μm). The mobile phase was an aqueous solution of buffer (contained 1.5 mM EDTA-2Na, 1 mM sodium etidronate, 11 mM sodium phosphate and 5 mM tetrabutylammonium bromide as ion-pair reagent) - methanol (88:12, v/v) adjusted to pH 6.75 using 1 M NaOH. The flow rate was 1 ml min−1. UV detection (λ = 262 nm) was used to quantitate risedronate in the concentration range of 10-500 ng ml−1. The limit of detection and quantitation for risedronate were 7 and 10 ng ml−1, respectively. The method was applied successfully to plasma samples from Wistar rats undergoing oral administration of risedronate mini-pills. Precision, extraction recoveries, as well as accuracy results, were satisfactory and no interference was found at the retention time of risedronate. Hence, the method is suitable for monitoring risedronate in rat plasma.  相似文献   

13.
A simple, sensitive and specific liquid chromatographic method with UV detection (228 nm) was developed for the simultaneous estimation of rosiglitazone and glimepride in human plasma. Rosiglitazone and glimepride were extracted from plasma using liquid–liquid extraction. Separation was achieved with an RP C18 Column using a mixture of phosphate buffer (50 mM) with octane sulfonic acid (10 mM), methanol and acetonitrile as a mobile phase (55:10:35, v/v). pH was adjusted to 7.0. Amlodipine was used as an internal standard (IS). LOD of the method was found to be 20 ng mL?1 for both drugs. Results were linear over the studied range 40.994–2007.556 ng mL?1 for rosiglitazone (r ≥ 0.99) and 41.066–2094.84 ng mL?1 for glimepride( r ≥ 0.99). The method was found to be simple, selective, precise and reproducible for the estimation of both drugs from spiked human plasma.  相似文献   

14.
A simple and inexpensive high performance capillary electrophoresis (HPCE) was applied to separate five benzoic acid compounds simultaneously. The investigation was carried out by micellar electrokinetic capillary chromatography (MECC). To avoid a time‐consuming and tedious procedure, orthogonal experimental design OA9 (34) for separation experiments was applied to find the optimal conditions in terms of the resolution and analytical time. The best conditions for separation were obtained using a 20 mM borax and 30 mM sodium dodecyl sulfate (SDS) buffer (pH 9.8) containing 2 mM β‐CD and 4% methanol (v/v). Online UV detection was performed at 250 nm. A voltage of 16 kV was applied and the temperature was controlled at 25 °C. Injection was performed for 5 s. The method was validated for the quantification of benzoic acid, salicylic acid and ortho‐aminobenzoic acid in Radix Isatidis, a traditional plant medicine with removal of endotoxin. The separation and determination were satisfactory and quick.  相似文献   

15.
A simple and sensitive high‐performance liquid chromatographic (HPLC) method was developed for determination of amrubicin and its metabolite amrubicinol in human plasma. After protein precipitation with methanol without evaporation procedure, large volume samples were injected and separated by two monolithic columns with a guard column. The mobile phase consisted of tetrahydrofuran–dioxane–water (containing 2.3 mM acetic acid and 4 mM sodium 1‐octanesulfonate; 2:6:15, v/v/v). Wavelengths of fluorescence detection were set at 480 nm for excitation and 550 nm for detection. Under these conditions, linearity was confirmed in the 2.5–5000 ng/mL concentration range of both compounds. The intra‐ and inter‐day precision and intra‐ and inter‐day accuracy for both compounds were less than 10%. The method was successfully applied to a clinical pharmacokinetic study of amrubicin and amrubicinol in cancer patients. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A simple method using a one-step liquid-liquid extraction (LLE) with butyl acetate followed by high-performance liquid chromatography (HPLC) with positive ion electrospray ionization tandem mass spectrometric (ESI-MS/MS) detection was developed for the determination of itopride in human plasma, using sulpiride as an internal standard (IS). Acquisition was performed in multiple reaction monitoring (MRM) mode, by monitoring the transitions: m/z 359.5 > 166.1 for itopride and m/z 342.3 > 111.6 for IS, respectively. Analytes were chromatographed on an YMC C18 reverse-phase chromatographic column by isocratic elution with 1 mM ammonium acetate buffer-methanol (20: 80, v/v; pH 4.0 adjusted with acetic acid). Results were linear (r2 = 0.9999) over the studied range (0.5-1000 ng mL−1) with a total analysis time per run of 2 min for LC-MS/MS. The developed method was validated and successfully applied to bioequivalence studies of itopride hydrochloride in healthy male volunteers.  相似文献   

17.
A high performance liquid chromatographic (HPLC) system is described for determination of the unsaturated disaccharide (delta Di-HA) derived from hyaluronic acid (HA) in human urine by digestion with hyaluronidase SD. The effects of eluents on the separation of delta Di-HA and delta Di-0S, which is derived from the reaction of chondroitin with the enzyme, have been studied. The established chromatographic conditions were as follows--column: a stainless steel tube (4 mm i.d. x 250 mm) packed with TSKgel NH2-60; eluent: a mixture of acetonitrile and 0.1 M Tris-HCl buffer containing 0.1 M boric acid and 10 mM sodium sulphate, pH 7.0 (64:36, v/v). The strong fluorescence of unsaturated disaccharide after the reaction with 2-cyanoacetamide in alkaline medium was used for post-column detection. The calibration curve for delta Di-HA was linear in the range 5 pmol-5nmol with a practical detection limit of 2 pmol. The assay coefficients of variation (n = 5) at 200 pmol for delta Di-HA and delta Di-0S were 1.7 and 1.5%, respectively. This HPLC system has been applied to the determination of HA in human urine.  相似文献   

18.
Hongzhen Lian  Yuna Wei 《Talanta》2007,71(1):264-269
The chromatographic fingerprints of industrial o-toluic acid, m-toluic acid and p-toluic acid have been established by HPLC-UV detection according to their impurity groups. HPLC separation of all relative substances involved in the groups was developed on a Kromasil C18 column by using methanol-water-NH4Ac-HAc buffer (100 mM, pH 4.70) 15/65/20 (v/v/v) as the mobile phase at a flow rate of 1.5 mL/min, and detection was operated by UV adsorption at a wavelength of 254 nm. The ultraviolet spectra corresponding to each chromatographic peak were also recorded for further identification of all components. Whether the limits of relative impurities residues in a toluic acid product are qualified or not can be intuitively estimated by analyzing its chromatogram with comparison to the fingerprint. This protocol has successfully provided some Chinese manufacturers with a simple and feasible method for quality control of toluic acids for industrial use.  相似文献   

19.
4-(2-Pyridylazo) resorcinol (PAR) and citrate were used as pre-column complexing agents for the determination of Nb(V) and Ta(V) as ternary complexes in geological samples. Aliquots of 2 ml of the standard and sample solutions containing the Nb(V) and Ta(V) complexes were loaded onto a concentrator column (C18, 0.4 cm x 4.6 mm) with a carrier mobile phase comprising 20% (v/v) methanol and containing 5 mM acetic acid, 5 mM citric acid and 10 mM tetrabutylammonium bromide (TBABr), pH 6.5 at 2 ml/min for 2 min, with the effluent being directed to waste. An automatic switching valve was then switched to flush both complexes from the concentrator column onto a C18 analytical column using a mobile phase comprising 32% (v/v) methanol and containing 5 mM acetic acid, 5 mM citric acid and 3 mM TBABr, pH 6.5 for 2.5 min. The switching valve was then switched back to the original position, and cleaned with methanol for 7 min to eliminate unwanted species still adsorbed to the concentrator column. This procedure prevented later eluting compounds from reaching the analytical column, which reduced the overall run time. The detection limits of Nb(V) and Ta(V) (determined at a signal-to-noise ratio of 3, detection wavelength of 540 nm and a 2-ml sample volume) were 0.012 and 0.039 ppb for Nb(V) and Ta(V), respectively. Recoveries of Nb(V) and Ta(V) were 99.4 and 96.2%, respectively. The HPLC results obtained from the reference granite and basalt samples agreed well with inductively coupled plasma MS and certified values, but the HPLC method yielded slightly low values of the Nb/Ta ratio.  相似文献   

20.
The analytical resolution of ketoconazole (KTZ) enantiomers was performed by high-performance liquid chromatography with sulphobutylether-β-cyclodextrin (SBE-β-CD) as a chiral mobile phase additive (chiral selector). Some important factors affecting the resolution of KTZ enantiomers were investigated. In addition, the molecular interaction between KTZ and SBE-β-CD was studied using the UV absorption spectrum and HPLC for an understanding of the resolution process. The results show that the type and concentration of the chiral mobile phase additive, the pH of the mobile phase and the volume fraction of methanol (?MeOH) in the mobile phase all have a clear influence on the resolution of KTZ enantiomers. Under optimal conditions, namely the use of 0.5 mmol L?1 SBE-β-CD as the chiral mobile phase additive, pH of 4.0 and ?MeOH in the mobile phase of 0.6, KTZ enantiomers are resolved with a resolution of 3.74. SBE-β-CD can bind to KTZ with a stability constant of 1157. The chromatographic method can provide the complexation stability constants of (+)-KTZ with SBE-β-CD (K(+)) and (?)-KTZ with SBE-β-CD (K(?)). The intrinsic enantioselectivity was calculated from the K(+) to (K(?)) ratio as 1.34.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号