首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Interactions of nanofilms containing ethanolamino groups with cobalt(II), nickel(II), copper(II), and zinc(II) ammoniates at the surface of polyvinylchloride plates and with chromium(III) ammoniate in a solution of ammonium chloride were studied. It was found that the groups of the film, together with chloride ions, displace all ammonia molecules from the inner coordination sphere of the metal. The average number of the ethanolamino N atoms of the film participating in formation of the metal ion coordination sphere is 3.35, 3.47, 3.67, 3.42, and 3.37 for Co2+, Ni2+, Cu2+, Zn2+, and Cr3+ complexes, respectively. The average number of chloride ions is 2 for Co2+, Ni2+, Cu2+, and Zn2+ and 3 for Cr3+. The coordination number of the central atoms is 6. The Cr3+ ion forms a coordination sphere composed of three N atoms and three chloride ions and a coordination sphere (charged 1+) made up of four N atoms and two chloride ions, with the third chloride ion being in the outer sphere. The Co2+, Ni2+, and Cu2+ ions form uncharged coordination spheres of two types: (1) with four N atoms and two chloride ions and (2) with three N atoms, two chloride ions, and the O atom of the ethanol hydroxyl group.  相似文献   

2.
Polyester having amino sulfonic acid moieties (TBES) was prepared by a liquid/solid biphase polycondensation of terephthaloyl chloride (TPC) and N,N-bis(2-hydroxyethyl)-2-aminoethanesulfonic acid (BES) in trimethyl phosphate (TMP) using triethylamine (TEA) as an acid acceptor. Blends of TBES with PVA and their metal complexes with Ni2+ and Co2+ ions were prepared. A strong interaction was observed between TBES and PVA. An electric conductivity of 10−6 S cm−1 was attained for the blend films containing about 5 wt % water. A coordination structure with two chelate rings is proposed for the metal complex with Ni2+ and Co2+ ions when the molar ratio of amino sulfonic acid groups in TBES to metal ions is larger than 2. Polymer blends complexed with Ni2+ or Co2+ ions result in semi-interpenetrating polymer networks from chelate formation. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3561–3569, 1997  相似文献   

3.
Two types of crosslinked polyurethanes (PU) have been synthesized: (a) PU crosslinked by metal ions (Cu2+ and Co2+), and (b) PU crosslinked by the complexes of metals with crown ether. Using X-ray scattering under small and wide angles the peculiarities of the structure of networks have been investigated. It was found that PU crosslinked by the metal crown ether complexes have a looser structure because of the bulky crosslink and diminished molecular mobility of the chains between two crosslinks, as was proven by the dielectric spectroscopy method. The X-ray and IR data have allowed proposing a scheme of the structure of the crosslinked PU with various types of crosslinks. The structures discovered may be considered as similar to metal catenandes. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1379–1386, 1998  相似文献   

4.
Sorption selectivity of copper(II), nickel(II), and cobalt(II) ions by KB-2E macroreticular carboxylic cation exchanger in the Na-form from dilute solutions was studied in the target concentration range (0.52.6) 103 M. The equilibrium distribution coefficients of Co2+, Ni2+, and Cu2+ were calculated. The role played by hydration of ions in their sorption by KB-2E cation exchangers is analyzed with consideration for IR spectroscopic, thermal analysis, and scanning electron microscopic data.  相似文献   

5.
High‐valent cobalt‐oxo intermediates are proposed as reactive intermediates in a number of cobalt‐complex‐mediated oxidation reactions. Herein we report the spectroscopic capture of low‐spin (S=1/2) CoIV‐oxo species in the presence of redox‐inactive metal ions, such as Sc3+, Ce3+, Y3+, and Zn2+, and the investigation of their reactivity in C? H bond activation and sulfoxidation reactions. Theoretical calculations predict that the binding of Lewis acidic metal ions to the cobalt‐oxo core increases the electrophilicity of the oxygen atom, resulting in the redox tautomerism of a highly unstable [(TAML)CoIII(O.)]2? species to a more stable [(TAML)CoIV(O)(Mn+)] core. The present report supports the proposed role of the redox‐inactive metal ions in facilitating the formation of high‐valent metal–oxo cores as a necessary step for oxygen evolution in chemistry and biology.  相似文献   

6.
Taking advantage of the specific properties of azuliporphyrin and the reactivity of cobalt(II), activation of an azulene C(sp2)−H bond occurred and organometallic complexes with Co−C bonding were formed. The system allowed for macrocyclic aromaticity tuning through metal coordination and oxidation. Thanks to the CoII−C and parallel tested CuII−C reactivity and the affinity of metal centers to dioxygen, oxygen atom insertion into the M−C bond could be investigated. Insertion starts with an oxygen molecule coordination and leads to monomeric and dimeric complexes of specific electronic structures. Formation of unique paramagnetic σ/π-hybrid bimetallic complexes enabled spectroscopic and theoretical investigations of peculiar CoII⋅⋅⋅Ru0 interactions.  相似文献   

7.
Composition and stability of coordination compounds of nickel(II) and cobalt(II) ions with maleic acid anion in aqueous isopropanol solutions (H2O-IPA) of composition χIPA = 0–0.5 mole fraction was studied by potentiometric titration at ionic strength of 0.1 maintained with sodium perchlorate at 298.15 K. Monoligand complexes of Ni2+ and Co2+ ions with maleic acid anion become stronger when isopropanol content rises. In the solvent of the studied composition, Co2+ ions form less stable complexes than Ni2+ ions that corresponds to the Irving-Williams series established for aqueous solutions. Variations in complex stability are more expressed at small IPA content and differ within experimental error at χIPA = 0.5 mole fraction. Obtained results were compared with literature data for akin compounds.  相似文献   

8.
The X-ray K-absorption edge of cobalt in some cobalt (II) and cobalt (III) complexes has been investigated using a 400 mm bent crystal spectrometer. The structure associated with the absorption edge has been used to deduce information regarding the bond lengths, the mode of bonding and the coordination of cobalt in complexes. On the basis of the results obtained, it has been concluded that Co ions are surrounded by distorted octahedra in CoII(Saltn)(H2O)2, CoIII(acac)(Saltn) whereas Co ions in CoII(Salbn) have a tetrahedral structure and Co ions in CoII(SalHn) have pseudotetrahedral structure. All the compounds exhibit slight ionic character.  相似文献   

9.
Poly(vinylamine), PVA, complexes with cobalt chloride hexahydrate exhibit a 45 °C enhancement in the glass‐transition temperature per mol % of the d‐block metal cation. Poly(ethylene imine), PEI, complexes with CoCl2(H2O)6 exhibit a 20 °C enhancement in Tg per mol % Co2+. Since the basicities of primary and secondary amines are comparable (i.e., pKb,PVA ≈ 3.34 vs. pKb,PEI ≈ 3.27) and the rates at which each polymeric ligand displaces waters of hydration in the coordination sphere of Co2+ are similar, transition metal compatibilization is operative in blends of both polymers with CoCl2(H2O)6. These two polymers are immiscible in the absence of the inorganic component. Infrared spectroscopy suggests that nitrogen lone pairs in PVA and PEI coordinate to Co2+. The stress–strain response of a 75/25 blend of PVA and PEI with 2 mol % Co2+ reveals a decrease in elastic modulus from 4.4 × 109 N/m2 to 5.7 × 107 N/m2, a decrease in fracture stress from 3.7 × 107 N/m2 to 2.0 × 106 N/m2, and an increase in ultimate strain from 1.3 to 12% relative to the 75/25 immiscible polymer–polymer blend. A plausible explanation for this effect is based on the fact that cobalt chloride hexahydrate compatibilizes both polymers by forming a coordination bridge between nitrogen lone pairs in dissimilar chains. Hence, poly(ethylene imine), which is very weak with a Tg near −40 °C, is integrated into a homogeneous structure with poly(vinylamine) and the mechanical properties of the individual polymers are averaged in the compatibilized ternary complex. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 552–561, 2000  相似文献   

10.
A new Schiff‐base ligand having a potentially coordinating thioether group (2‐quinoline‐N‐(2′‐methylthiophenyl)methyleneimine, qmtpm ) has been prepared. The synthesis, structure, UV‐Vis and EPR studies of one copper(II) and two cobalt(II) complexes from this ligand is reported. The X‐ray structures of the CuII and CoII chlorido complexes 1 and 2 reveal the metal atoms in highly distorted square‐pyramidal environments constituted of one tridentate ligand and two anions. On the other hand, the thiocyanato CoII compound 3 exhibits a distorted trigonal‐bipyramidal structure. These structural variations are apparently due to the different counter‐ions which leads to distinct lattice interactions. The spectroscopic data obtained by EPR and UV‐Vis investigations are in agreement with the solid‐state structures of the coordination compounds.  相似文献   

11.
Ion-selective electrodes based on the neutral carrier, 12-crown-4, in a poly(vinyl chloride) matrix were found to respond ideally, or almost ideally, to potassium, sodium, barium, strontium, magnesium, cobalt(II), nickel(II) and aluminum ions. The electrode showed good selectivity for Al3+ over Co2+ and Mg2+, and for Co2+ over Mg2+. Little selectivity was found for the other ions tested.  相似文献   

12.
Disulfide/thiolate interconversion supported by transition‐metal ions is proposed to be implicated in fundamental biological processes, such as the transport of metal ions or the regulation of the production of reactive oxygen species. We report herein a mononuclear dithiolate CoIII complex, [CoIIILS(Cl)] ( 1 ; LS=sulfur containing ligand), that undergoes a clean, fast, quantitative and reversible CoII disulfide/CoIII thiolate interconversion mediated by a chloride anion. The removal of Cl? from the CoIII complex leads to the formation of a bis(μ‐thiolato) μ‐disulfido dicobalt(II) complex, [Co2II,IILSSL]2+ ( 2 2+). The structures of both complexes have been resolved by single‐crystal X‐ray diffraction; their magnetic, spectroscopic, and redox properties investigated together with DFT calculations. This system is a unique example of metal‐based switchable Mn2‐RSSR/2 M(n+1)‐SR (M=metal ion, n=oxidation state) system that does not contain copper, acts under aerobic conditions, and involves systems with different nuclearities.  相似文献   

13.
Mononuclear metal–dioxygen species are key intermediates that are frequently observed in the catalytic cycles of dioxygen activation by metalloenzymes and their biomimetic compounds. In this work, a side‐on cobalt(III)–peroxo complex bearing a macrocyclic N‐tetramethylated cyclam (TMC) ligand, [CoIII(15‐TMC)(O2)]+, was synthesized and characterized with various spectroscopic methods. Upon protonation, this cobalt(III)–peroxo complex was cleanly converted into an end‐on cobalt(III)–hydroperoxo complex, [CoIII(15‐TMC)(OOH)]2+. The cobalt(III)–hydroperoxo complex was further converted to [CoIII(15‐TMC‐CH2‐O)]2+ by hydroxylation of a methyl group of the 15‐TMC ligand. Kinetic studies and 18O‐labeling experiments proposed that the aliphatic hydroxylation occurred via a CoIV–oxo (or CoIII–oxyl) species, which was formed by O? O bond homolysis of the cobalt(III)–hydroperoxo complex. In conclusion, we have shown the synthesis, structural and spectroscopic characterization, and reactivities of mononuclear cobalt complexes with peroxo, hydroperoxo, and oxo ligands.  相似文献   

14.
New derivatives of 1,4,7,10-tetraazacyclododecanes have been synthesized. The coordination properties toward Co2+ of these ligands have been studied by means of spectroscopic methods. The stability constants of cobalt complexes with ligand L-1 and L-2were determined. Unusual complexes with a 2:1 (L:Co2+) stoichiometry have been found.  相似文献   

15.
A new dinuclear cobalt(II) compound,[(TPA*)CoII(DHBQ2–)CoII(TPA*)]2+ ( 1 2+) {TPA* =tris[(3, 5‐dimethyl‐pyrazol‐l‐yl)methyl] amine, DHBQ = deprotonated 2, 5‐dihydroxy‐1, 4‐benzoquinone}, was prepared and structurally and magnetically characterized. X‐ray crystallography revealed the centrosymmetric dinuclear divalent cobalt ions bridged by DHBQ2– unit. The cobalt ions in the title compound have a distorted octahedral arrangement by coordination with four nitrogens of a TPA* and two oxygens of a bridging DHBQ unit. Due to the interdimer offset face‐to‐face π–π stacking in the crystallographic ac plane, the complex shows extended 2D supramolecular structure. Magnetic experiments showed the cobalt‐based dinuclear compound exhibits antiferromagnetic interactions with g = 2.35 and J/kB = –2.76 K, respectively.  相似文献   

16.
A chemo‐sensor [Ru(bpy)2(bpy‐DPF)](PF6)2 ( 1 ) (bpy=2,2′‐bipyridine, bpy‐DPF=2,2′‐bipyridyl‐4,4′‐bis(N,N‐di(2‐picolyl))formylamide) for Cu2+ using di(2‐picolyl)amine (DPA) as the recognition group and a ruthenium(II) complex as the reporting group was synthesized and characterized successfully. It demonstrates a high selectivity and efficient signaling behavior only for Cu2+ with obvious red‐shifted MLCT (metal‐to‐ligand charge transfer transitions) absorptions and dramatic fluorescence quenching compared with Zn2+ and other metal ions.  相似文献   

17.
A novel chemosensor, namely 3‐(4‐chlorophenyl)‐1‐(pyridin‐2‐yl)prop‐2‐en‐1‐one, CPPEO, and its metal complexes have been synthesized and characterized by using sets of chemical and spectroscopic techniques, such as elemental analysis, mass, Fourier transform‐infrared and UV–Vis spectral analysis. The thermal properties of the metal complexes have been investigated by thermogravimetric techniques. The decomposition mechanism of the titled complexes was suggested. The results showed that the Co2+ and Mn2+ complexes have an octahedral geometry, while Zn2+ and Cd2+ complexes have tetrahedral geometry. The kinetic and thermodynamic parameters of the thermal decomposition stages have been evaluated using the Coats–Redfern method. The optical sensing response of the investigated chemosensor to the different metal ions was investigated. It responds well to the tested metal ions as reflected from the significant change in both absorption and emission spectra upon adding different concentrations of the metal salts, confirming the intramolecular charge transfer of the chemosensor upon effective coordination with the used metal ions. This leads to enhancing ICT interaction, causing a significant shift in the presence of strongly complexing metal ions. This was fully reversible, where the solution of dye‐metal ion complex was decomplexed by adding an EDTA solution to revert the original spectrum of the dye. The stability constants, K, for the complexes of the investigated chemosensor with the mentioned metal ions were calculated, indicating that Co2+ is the most effectively detected, and the potential of the novel dye was highly efficient switchers for Co2+ ions. Additionally, the molecular modeling was carried out for the chemosensor and its metal complexes. Finally, the solid complexes have been tested for their in vitro antimicrobial activities against some bacterial strains (Gram +ve and Gram ?ve bacteria), as well as antifungal strains.  相似文献   

18.
The radiation-chemical reduction of Co2+ ions in an aqueous solution of Co(ClO4)2 containing sodium formate was studied. Stable metal sols containing spherical particles with a diameter of 2–4 nm are formed under γ-irradiation in the presence of polyacrylate as the stabilizing additive. An aqueous solution of colloidal cobalt has an optical absorption that increrases smoothly in the UV region without a maximum to 200 nm (ɛ200=1.3·104 mol-1 L cm-1). It is established that the radiation-chemical reduction of the Co2+ ions occursvia an autocatalytic mechanism. The metal sols catalyze the reduction of the Co2+ ions by Co2 radical ions formed under irradiation. The properties of the sols were studied, and it is shown that they are readily oxidized by hydrogen peroxide and other oxidants. The mechanism of chemical reactions involving the sols is discussed. Tranalated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1959–1964, October, 1998.  相似文献   

19.
The title compound, namely lithium cobalt(II/III) bis(diphosphate), Li4.03Co1.97(P2O7)2, is a new mixed‐valent lithium/cobalt(II/III) phosphate. Three metal sites out of seven are occupied simultaneously by Li+ and CoII/III ions. This disorder was established both from an analysis of the atomic displacement ellipsoids and Li/Co—O bond distances, and by means of a charge‐distribution (CHARDI) model, which provides satisfactory agreement on the computed charges (Q) for all the cations.  相似文献   

20.
A thermodynamic study on the interaction of bovine carbonic anhydrase II, CAII, with cobalt(II) and iron(III) ions was made using isothermal titration calorimetry (ITC) at 300.15 K and 310.15 K in Tris buffer solutions at pH=7.5. The enthalpies of interaction of Co2++ CAII and Fe3++ CAII are reported and analyzed in terms of the extended solvation theory. The results indicate that there are three identical and non-cooperative binding sites for Co2+ and Fe3+ ions. Binding of these ions with CAII occurs exothermically with dissociation equilibrium constants of 87.15 and 91.00 μmol⋅L−1 at 300.15 K, for Co2+ and Fe3+, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号