首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1-Chloro-2-β-naphthylacetylene (ClβNA) polymerized in good yields in the presence of MoCl5-based catalysts. The highest weight-average molecular weight of poly(ClβNA) reached about 3 × 105. The polymer was a yellow solid (absorption cutoff in CHCl3 450 nm). It was soluble in toluene, chloroform, etc., and provided a tough film by the solvent casting method. The polymer retained its weight up to 300°C in air; it was thermally less stable than poly(1-chloro-2-phenylacetylene) but more stable than poly(β-naphthylacetylene). The oxygen permeability coefficient (PO2) of this polymer was 19 barrers (25°C), which is fairly small for a substituted polyacetylene. © 1996 John Wiley & Sons, Inc.  相似文献   

2.
(p-tert-Butyl-o,o-dimethylphenyl)acetylene (BDMPA) polymerized in high yields in the presence of W and Mo catalysts. Especially the W(CO)6–CCl4hv catalyst quantitatively produced a polymer totally soluble in toluene and chloroform. The weight-average molecular weight of this polymer exceeded 2 × 106. Poly(BDMPA) was a dark brown solid, and had alternating double bonds along the main chain. The weight loss of the polymer in air occurred only above 300°C, indicating a fairly high thermal stability. A free-standing film could be fabricated by solution casting. The electrical conductivity of the polymer at 25°C was 1 × 10−13 S cm−1. The oxygen permeability coefficient and the separation factor of O2 vs. N2 of the polymer at 25°C were 67 barrers and 3.2, respectively. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
This research deals with comparison of the activity of various Rh catalysts in the polymerization of monosubstituted acetylenes and the effect of various amines used in conjunction with [Rh(nbd)Cl]2 in the polymerization of phenylacetylene. A zwitterionic Rh complex, Rh+(nbd)[(η6‐C6H5)B?(C6H5)3] ( 3 ), was able to polymerize phenylacetylene ( 5a ), t‐butylacetylene ( 5b ), N‐propargylhexanamide ( 5c ) and n‐hexyl propiolate ( 5d ), and displayed higher activity than the other catalysts examined, that is [Rh(nbd)Cl]2 ( 1 ), [Rh(cod)(Oo‐cresol)]2 ( 2 ), and Rh‐vinyl complex ( 4 ). Monomers 5a and 5c polymerized virtually quantitatively or in fair yields with all these catalysts, while monomer 5b was polymerizable only with catalyts 3 and 4 . Monomer 5d did not polymerize in high yields with these Rh complexes. The catalytic activity tended to decrease in the order of 3 > 4 > 2 > 1 . Although polymerization of 5a did not proceed at all in toluene with [Rh(nbd)Cl]2 alone, it smoothly polymerized in the presence of various amines as cocatalysts. The polymerization rate as well as the molecular weight of polymer depended on the basicity and steric bulkiness of amines. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4530–4536, 2005  相似文献   

4.
[o-(Trimethylgermyl)phenyl]acetylene was polymerized in the presence of WCl6, W(CO)6-hv, etc., to give polymers whose weight-average molecular weights reached ca. 7.0 X 105 at the highest. When the MoOCl4-n-Bu4Sn-EtOH (1 : 1 : 1) catalyst was used, the polydispersity ratio of the polymer obtained was 1.08, and the number-average molecular weight increased in direct proportion to monomer conversion; these indicate that this polymerization is a living polymerization. The polymer had the structure ? [CH?C(C6H4-o-GeMe3)]n ? and was a dark purple solid (λmax = 551 nm, εmax = 6100 M-1 cm-1 in THF) soluble in organic solvents such as toluene and chloroform. The onset temperature of weight loss of the polymer in TGA in air was ca. 230°C, and the glass transition temperature was above 180°C. The Po2 of the present polymer is 105 barrers—larger than the value of natural rubber and fairly close to that of poly(dimethylsiloxane). © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Some polyacetylene derivatives containing an amine functional group were prepared by the polymerization of propargylamine (PA) and 1,1-diethylpropargylamine (DEPA) with various transition metal catalysts. In the polymerization of PA, Mo-based catalysts were more effective than that of W-based catalysts, and organoaluminum compounds, especially EtAlCl2, were found to be very effective cocatalysts. In the polymerization of DEPA, Mo-and W-based catalyst systems showed a similar catalytic activity. The polymerization easily proceeded in polar solvents such as nitrobenzene and DMF as well as nonpolar aromatic solvents such as chlorobenzene, toluene, etc. The resulting poly(PA) and poly(DEPA) were insoluble in organic solvents regardless of polymerization catalysts but the polymers were found to be stable to air oxidation. Thermogravimetric analyses and thermal transitions of poly(PA) and poly(DEPA) were also studied. © 1992 John Wiley & Sons, Inc.  相似文献   

6.
Polymerization of phenylacetylene (PA) with [(cod)IrCl]2‐based catalysts (cod: 1,5‐cyclooctadiene) was examined. The [(cod)IrCl]2/n‐BuLi and [(cod)IrCl]2/Ph2C?C(Ph)Li systems induced the polymerization of PA to produce polymers with a number‐average molecular weight (Mn) of around several thousand in rather low yields. On the other hand, the catalyst composed of [(cod)IrCl]2, norbornadiene (nbd), Ph3P, and Ph2C?C(Ph)Li (molar ratio of 1:1:1.1:2) produced polymer in a high yield (ca. 80%) in toluene at 0 °C. The resulting polymer showed a bimodal gel permeation chromatographic profile (Mn = 209,000 and 4300; ratio: 81/19). On the basis of these findings, the presence of two active species, that is, Ir complexes with nbd and cod, are discussed. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1075–1080, 2002  相似文献   

7.
Three disubstituted acetylenes with an adamantyl group—1-(p-adamantylphenyl)-2-chloroacetylene (ClpAdPA), 1-(p-adamantylphenyl)-1-propyne (pAdPP), and 1-(p-adamantylphenyl)-2-phenylacetylene (pAdDPA)—polymerized in good yields in the presence of MoCl5- or TaCl5-based catalysts. The highest weight-average molecular weights of poly(ClpAdPA), poly(pAdPP), and poly(pAdDPA) reached 3.6 × 105, 1.1 × 106, and 6.0 × 106, respectively. The polymers were yellow to white solids and completely soluble in toluene, chloroform, and so forth. These polymers thermally were fairly stable, and the onset temperatures of weight loss in air were over 360 °C. Poly(pAdPP) and poly(pAdDPA) provided free-standing films by solution casting, and their oxygen permeability coefficients (PO2) at 25 °C were 8.6 and 55 barrers [1 barrer = 1 × 10−10 cm3 · (STP) · cm/(cm2 · s · cm Hg)], respectively, which are relatively small compared to those of other substituted polyacetylenes. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 4546–4553, 1999  相似文献   

8.
Polymerization and polymer properties of 1-phenyl-2-[4-(triphenylsilyl)phenyl]acetylene (pPh3SiDPA) and 1-phenyl-2-[4-(triisopropylsilyl)phenyl]acetylene (piPr3SiDPA), which have very bulky silyl groups, were examined. These monomers polymerized in good yields in the presence of TaCl5-based catalysts. The highest weight-average molecular weights of poly(pPh3SiDPA) and poly(piPr3SiDPA) reached about 1 × 106 and 4.8 × 106, respectively. The polymers were yellow to orange-colored solids which were soluble in toluene, chloroform, etc., and provided free-standing films by solution casting. The onset temperatures of weight loss of poly(pPh3SiDPA) and poly(piPr3SiDPA) in TGA in air were 430 and 270°C, respectively. The oxygen permeability coefficients of poly(pPh3SiDPA) and poly(piPr3SiDPA) at 25°C were 3.8 and 20 barrers, respectively, and relatively small. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2721–2725, 1998  相似文献   

9.
Polymerization and polymer properties of diphenylacetylenes with bulky silyl groups (SiMe2i-Pr, SiMe2t-Bu, SiMe2Ph, SiEt3) at para or meta position were studied under comparison with those of the SiMe3 derivatives. The present monomers polymerized in good yields with TaCl5-cocatalysts to form high molecular-weight polymers (M w > 4 × 105). The polymer yields of para-substituted monomers were similar to that of the SiMe3 derivative, while those of meta substituted monomers were lower than that of m-SiMe3 derivative. Most of the polymers were totally soluble in common solvents such as toluene and CHCl3, although the polymers with p-SiMe2t-Bu and p-SiMe2Ph groups were partly insoluble in all solvents. These polymers resembled SiMe3-containing homologues in the UV-visible absorption and thermal stability. The oxygen permeability coefficients of these polymers were in the range of 10?9?10?8 cm3 (STP) cm/(cm2·s cm Hg)—lower than those of the corresponding SiMe3-containing polymers. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
The polymerization of 1-methoxy-1-ethynylcyclohexane (MEC) was carried out by various transition metal catalysts. The catalysts MoCl5, MoCl4, and WCl6 gave a relatively low yield of polymer (≤ 16%). The catalytic activity of Mo-based chloride catalyst was greater than that of W-based chloride catalyst. However, catalyst tungsten carbene complex (I) gave a larger molar mass and higher yield in the presence of a Lewis acid such as AlCl3 than in the absence of a Lewis acid. The activity of the tungsten carbene complex was obviously affected by Lewis acidity. The catalyst PdCl2 was a very effective catalyst for the present polymerization and gave polymers in a high yield. The structure of the resulting poly(MEC) was identified by various instrumental methods as a conjugated polyene structure having an α-methoxycyclohexyl substituent. The poly(MEC)s were mostly light-brown powders and completely soluble in various organic solvents such as tetrahydrofuran (THF), chloroform (CHCl3), ethylacetate, n-butylacetate, dimethylformamide, benzene, xylene, dimethylacetamide, 1,4-dioxane, pyridine, and 1-methyl-2-pyrrolidinone. Thermogravimetric analysis showed that the polymer started to lose mass at 125°C and that maximum decomposition occurred at 418°C. The x-ray diffraction diagram shows that poly(MEC) has an amorphous structure. © 1997 John Wiley & Sons, Inc.  相似文献   

11.
1-(p-t-Butylphenyl)-2-phenylacetylene and 1-(p-n-butylphenyl)-2-phenylacetylene were polymerized in catalytic systems based on TaCl5 to give new polymers in high yields. These monomers were more reactive than diphenylacetylene (DPA) in copolymerization. Unlike poly (DPA), the present polymers were soluble in toluene, CHCl3, etc. owing to the high configurational entropy induced by the para-substituents. Their relative weight-average molecular weights determined by GPC were in the range of 6 × 105–36 × 105, and films could be obtained by solution casting. These polymers were fairly thermally stable, as seen from their high onset temperatures (320–380°C) of weight loss in TGA in air. The oxygen permeability coefficient of the polymer with t-Bu group was 1100 barrers, the highest among those of all the hydrocarbon polymers. © 1994 John Wiley & Sons, Inc.  相似文献   

12.
1-Phenyl-2-[m-(trimethylgermyl)phenyl]acetylene (m-Me3GeDPA) and 1-phenyl-2-[p-(trimethylgermyl)phenyl]acetylene (p-Me3GeDPA) polymerized with TaCl5–cocatalyst systems to provide in high yields new polymers having weight-average molecular weights over 1 × 106. Poly(m-Me3GeDPA) was a yellow solid, which completely dissolved in toluene, chloroform, etc., to form a tough film by solution casting. Poly(p-Me3GeDPA) was also a yellow solid and partly insoluble in any solvents. The onset temperatures of weight loss for these polymers in the thermogravimetric analysis in air were as high as ca. 400°C. The oxygen permeability coefficient of poly(m-Me3GeDPA) was 1100 barrers (25°C), which is about twice that of poly(dimethylsiloxane). © 1996 John Wiley & Sons, Inc.  相似文献   

13.
In this review article, we have consolidated our recent studies on late transition metal catalysts (mainly Fe, Co) for olefin polymerization/oligomerization. A series of bisiminopyridyl Co(II) and Fe(II) complexes were synthesized. These catalysts when activated with MAO in aromatic or aliphatic hydrocarbon solvents, oligomerize or polymerize ethylene to α-olefins or high molecular weight polymers with exceptionally high activities and selectivities. The electronic and steric effects of allyloxy and benzyloxy substituted bisiminopyridyl Fe(II) and Co(II) complexes were also investigated. The influence of catalyst structure and temperature on the polymerization activity, thermal properties and molecular weight were discussed. The effects of heterogenization of these catalysts on silica and modified SBA-15 were analyzed. The polymerization of polar monomers such as vinyl ethers and methyl methacrylate was tested and no specific trends in activity and polymer molecular weight with changes in steric bulkiness around the metal center were observed with the same catalyst system.  相似文献   

14.
Synthesis, properties, and membrane-separation functions of a novel fluorine-containing poly(phenylacetylene) were examined. The monomer used was [o-n-(perfluorohexyl)phe-nyl]acetylene, which has a rigid rod-like ortho-substituent. Polymers, whose intrinsic vis-cosities ([η]) were ca. 0.4–2.2 dL/g, were obtained in high yields with various W and Mo catalysts. The MoCl5–Ph3Sb catalyst achieved the highest [η] of 2.25 dL/g corresponding to an Mw over one million. The polymer was a brown solid soluble only in F -containing solvents such as m-(CF3)2C6H4. The oxygen permeability coefficient of the polymer mem-brane was 90 barrers, which is the second highest among those of ortho-substituted poly(phenylacetylenes). In the pervaporation of an ethanol–water mixture, the poly-mer membrane showed ethanol permselectivity [α(EtOH/H2O) = 1.7]. © 1995 John Wiley & Sons, Inc.  相似文献   

15.
设计并合成了具有较大空间位阻侧链的取代炔烃2-炔丙氧基-1,4-对苯二甲酸二甲酯单体,分别采用WCl6,WCl6-SnPh4和[Rh(nbd)Cl]2催化体系使其聚合,考察了不同催化剂对聚合的影响.采用红外光谱和核磁共振等技术对单体及聚合物结构进行了表征,并用紫外光谱和荧光光谱研究了所得聚合物的光学性能.结果表明,使用[Rh(nbd)Cl]2催化剂时得到的聚合物是高反式结构,荧光光谱中除了侧基的350 nm发射峰外,还在429 nm处存在较弱的共轭主链发射.使用WCl6-SnPh4催化体系得到的聚合物由于较高的顺式含量,主要是侧基的发射,而较大侧基位阻使主链共轭降低.尽管存在较短的间隔基,引入较大空间位阻侧基仍然迫使聚合物主链扭曲,顺式结构中侧基空间位阻的影响更大.  相似文献   

16.
The effect of various olefins as chain transfer agents was studied in the polymerization of 1-chloro-1-octyne, 1-chloro-2-phenylacetylene, 2-octyne, etc., catalyzed by MoCl5n-Bu4Sn (1 : 1). Si-containing olefins, especially trimethylvinylsilane, greatly lowered the polymer molecular weight in the polymerization of the Cl-containing acetylenes, e.g., the M n of poly(1-chloro-1-octyne) was 4.2 × 105 without an olefin, whereas it decreased to 3.4 × 104, i.e., below 1/10 in the presence of trimethylvinylsilane (1/2 equiv to monomer). In contrast, the molecular weight of poly(2-octyne) did not decrease that much, even with trimethylvinylsilane. The Cl-containing polyacetylenes obtained in the presence of trimethylvinylsilane as chain transfer agent possessed the trimethylsilyl group. Thus, the present study enables control of the molecular weight of substituted polyacetylenes by chain transfer, and further verifies the metal carbene mechanism for the polymerization of substituted acetylenes. © 1993 John Wiley & Sons, Inc.  相似文献   

17.
The polymerization of aliphatic disubstituted acetylenes was examined with MoOCl4n‐Bu4Sn–EtOH (1/1/2) ternary catalyst in anisole at 0 °C. Various linear aliphatic disubstituted acetylenes such as 2‐nonyne provided polymers with narrow molecular weight distributions (weight‐average molecular weight/number‐average molecular weight = 1.05–1.20). The living character of the polymerization was proven by both the time profile of the polymerization and the multistage polymerization of 2‐nonyne. The initiation efficiency was about 3%, which is rather low. Although 5‐dodecyne, which has a triple bond in a more inner part, polymerized more slowly than 2‐nonyne, their living characters were hardly different. Diblock copolymers were synthesized by the sequential living polymerization of internal linear alkynes. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2697–2701, 2000  相似文献   

18.
Polymerization of five monomers, 1-[p-(trans-4′-alkylcyclohexyl)phenoxy]alkyne (i.e., PCH001A, where PCH, 0, 01 and A represent phenylcyclohexyl mesogenic moiety, number of carbon in an alkyl group attached to cyclohexyl group, ether linkage + number of methylenic units in the spacer between phenoxy and acetylenic groups, and terminal acetylene, respectively) were carried out using Ziegler-Natta and metathesis catalysts. All polymers were soluble in organic solvents such as benzene, chloroform, and THF. A liquid crystalline phase was observed in the polymers of PCH303A and PCH503A through the polarized optical microscope and DSC measurements. Polymerization of PCH003A by the Fe(acac)3-AlEt3 catalyst yielded a high-molecular-weight polymer with Mw = ca. 3 × 106. © 1993 John Wiley & Sons, Inc.  相似文献   

19.
新一代高活性后过渡金属烯烃聚合催化剂   总被引:1,自引:0,他引:1  
介绍了近几年发展起来的新一代后期过渡金属(Fe,Co,Ni,Pd)烯烃聚合催化剂,对催化剂的结构、性能及催化烯烃聚合进行了阐述。  相似文献   

20.
大部分的挥发性有机物(VOCs)污染环境,危害人身健康.目前,我国虽然已开展了治理 VOCs污染的工作,但还缺乏有效的、拥有自主知识产权的 VOCs治理技术,因此研发新型高效 VOCs处理技术迫在眉睫.催化氧化法是公认的最有效消除 VOCs的途径之一,而高性能催化剂的研发是实现该过程的关键.近年来,人们围绕消除 VOCs的高效且价廉的催化剂的研发开展了卓有成效的工作,许多过渡金属氧化物、混合或复合金属氧化物及其负载贵金属催化剂均被认为是有效的催化氧化材料.与体相材料相比,多孔材料具有发达的孔道结构和高的比表面积,一方面有利于反应物的扩散、吸附和脱附,因而具有更高的催化活性和选择性;另一方面有利于活性组分(如贵金属等)在多孔材料表面的高分散,抑制活性组分的烧结,因而具有更好的催化稳定性.本文简述了近年来多孔金属氧化物在环境污染物消除领域的研究进展,阐述了以有序介孔或大孔过渡金属氧化物、钙钛矿型氧化物和负载贵金属催化剂的制备及其对典型 VOCs(如苯系物、醇类、醛类及酮类等)氧化的催化性能,重点介绍了四类催化材料,包括有序介孔过渡金属氧化物或复合氧化物(Co3O4, MnO2, Fe2O3, Cr2O3和 LaFeO3等)催化剂,有序介孔金属氧化物负载贵金属(Au/Co3O4, Au/MnO2和 Pd/Co3O4等)催化剂,三维有序大孔过渡金属氧化物或复合氧化物(Fe2O3, LaMnO3, La0.6Sr0.4MnO3和 La2CuO4等)催化剂,以及三维有序大孔金属氧化物负载贵金属(Au/Co3O4, Au/LaCoO3, Au/La0.6Sr0.4MnO3和 AuPd/Co3O4等)催化剂的制备及其物化性质与对苯、甲苯、二甲苯、乙醇、丙酮、甲醛、甲烷或氯甲烷等 VOCs氧化的催化性能之间的相关性.借助二氧化硅或聚甲基丙烯酸甲酯微球等硬模板,采用纳米浇铸法可制备出二维或三维的有序单一或多级孔道结构的金属氧化物.研究表明,多孔金属氧化物的催化性能远优于其体相甚至纳米催化剂的.有序多孔材料的优异催化性能与其拥有大的比表面积、高的吸附氧物种浓度、优良的低温还原性、独特的孔道结构、活性组分的高分散以及贵金属与氧化物载体之间的强相互作用等有关.探明影响催化剂活性的因素有利于从原子水平上认识催化过程,为新型高效催化剂的设计与制备奠定基础.本文还指出了此类研究中存在的一些问题,例如利用硬模板法制备多孔材料的缺点是目标催化剂的收率低,硬模板浪费严重,大规模制备多孔催化剂势必增加制备成本,这些问题有待于妥善解决.与此同时,还展望了 VOCs消除技术的未来发展趋势,采用多种技术联用的方法有望最大程度地提高 VOCs的消除效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号