首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is an increasing awareness of out‐of‐school program value in enhancing student interest and understanding of science, technology, engineering, and mathematics (STEM). This study examined the impact of an out‐of‐school STEM education program on student attitudes toward STEM disciplines and STEM careers. A STEM education program implemented at a public research university was designed to integrate STEM disciplines with hands‐on problem‐based activities. Design features included authentic learning contexts, engineering design processes, and content integration. Data sources included an attitude survey and interviews conducted with forty sixth grade middle school student participants. The analysis revealed significant differences between pre and posttests on student attitudes toward personal and social implications of STEM, science and engineering learning, and their relationship to STEM. Findings showed that the program contributed to students’ developing interest in STEM fields, and helped them make connections between schoolwork and daily lives. Recommendations for future research on out‐of‐school STEM education programs were discussed.  相似文献   

2.
There is a need for more students to be interested in science, technology, engineering, and mathematics (STEM) careers to advance U.S. competitiveness and economic growth. A consensus exists that improving STEM education is necessary for motivating more students to pursue STEM careers. In this study, a survey to measure student (grades 4–6) attitudes toward STEM and STEM careers was developed and administered to 662 students from two STEM‐focused and three comprehensive (non‐STEM‐focused) schools. Cronbach's alphas for the whole survey and subscales indicated a high internal consistency. Statistically significant difference in means between students attending the STEM‐focused and comprehensive schools on the two subscales of the survey and the overall survey were found. However, the explained variance for these results was approximately 1%. The survey is a useful tool to assess efficacy of STEM education programs on student attitudes toward STEM and STEM careers.  相似文献   

3.
The new standards for K–12 science education suggest that student learning should be more integrated and should focus on crosscutting concepts and core ideas from the areas of physical science, life science, Earth/space science, and engineering/technology. This paper describes large‐scale, urban elementary‐focused science, technology, engineering, and mathematics (STEM) collaboration between a large urban school district, various STEM‐focused community stakeholders, and a research‐focused private university. The collaboration includes the development of an integrated STEM curriculum for grade K–5 with accompanying teacher professional development. This mixed‐methodology study describes findings from focus group interviews and a survey of teachers from Title I elementary schools. Findings suggest the importance of the following critical features of professional development: (a) coherence, (b) content focus, (c) active learning, (d) collective participation, and (e) duration to the success of large‐scale STEM urban elementary school reform  相似文献   

4.
Although STEM is at the forefront of many educational initiatives, little is known about various professionals’ perceptions of STEM. This mixed‐methods study surveyed 164 preservice teachers, inservice teachers, administrators, informal educators, and STEM professionals. Quantitative and qualitative questions on the survey elicited participants’ perceptions of STEM, STEM support, and STEM careers. Quantitative analysis revealed that profession influenced understandings of STEM, importance of STEM, support for STEM, and perceptions of STEM career opportunities. Qualitative analysis provided rich explanations for the differences in perceptions among professions. This study suggests that science teacher educators need to ensure preservice teachers have understandings of STEM and STEM careers, K‐16 educators need to emphasize the current importance of STEM, and administrators and policymakers need to align visions of STEM with curriculum and pacing guides so teachers feel supported in their STEM endeavors.  相似文献   

5.
This article reports findings from a study of an integrated science, technology, engineering, and mathematics (STEM) education program on student interest and awareness in science and engineering. The analysis features grade 3–5 students from a high-poverty, urban school system in the Mid-Atlantic region. Through the quantitative analysis of closed ended survey responses and the qualitative analysis of an open-ended query, we describe how the adoption of an intensive STEM-focused partnership could influence students’ early interest in and awareness of science and engineering as disciplines and careers. The analysis of the student responses revealed that after 1 year of the project, the students enrolled in the program demonstrated developing interest in science and engineering and were better able to articulate a greater understanding of engineering as a discipline. These findings have implications for the effectiveness of an integrated STEM approach for upper elementary students participating and succeeding in the STEM fields.  相似文献   

6.
School STEM Culture—an aspect of culture within a school community—is defined as the beliefs, values, practices, and resources in STEM fields as perceived by students, parents, teachers, and administrators and counselors within a school. This study validates the STEM Culture Assessment Tool (STEM‐CAT), an instrument intended to advance the use of the School STEM Culture construct within the research community. Internal consistency was determined through the use of Cronbach's alpha and factor analyses, and the instrument was found to be a reliable measure of School STEM Culture. The instrument can be used in future research to quantify School STEM Culture to determine if interventions change the culture of a school to further STEM education.  相似文献   

7.
The article explores the effect of the engagement of university science, technology, engineering, and mathematics (STEM) faculty in the Math and Science Partnership program. The findings suggest that K‐12 teachers benefited from the engagement in terms of improved approaches to teaching and learning, increased knowledge of subject matter content, and increased confidence. STEM faculty benefited from new ideas about teaching and learning, insights into research, more knowledge of the K‐12 education system, and a broader understanding of education overall. Student achievement also improved, although direct attribution to faculty involvement is somewhat unclear. Furthermore, in the short run at least, it appears that few benefits extend beyond those faculty who are direct participants, and few systemic changes have been made in institutions of higher education systems.  相似文献   

8.
Objective: In this study, we investigated the implementation of project‐based learning (PBL) activities in four secondary science, technology, engineering, and mathematics (STEM) education settings to examine the impact of inquiry based instructional practices on student learning. Method: Direct classroom observations were conducted during the 2013–2014 school year in STEM Traditional Courses, a STEM Platform School, an Engineering Optional Program (EOP), and a Virtual STEM Academy (VSA) to measure teacher instructional practices (School Observation Measure) and student engagement (The Rubric for Student‐Centered Activities). Results: The four approaches to STEM education showed significant differences in their implementation of PBL, with the EOP and VSA having higher incidences of PBL activities. Additionally, higher‐level questioning strategies, higher‐order instructional feedback, and integration of STEM subject areas was absent or rarely observed. Conclusions: Components of PBL are missing in STEM education, in traditional and non‐traditional STEM courses. In‐service teachers may benefit from professional development that enhances their understanding of PBL activities to maximize student learning opportunities.  相似文献   

9.
This is a case study of the implementation of state STEM (science, technology, engineering, and mathematics) policy over the period of the first 18 months of building a regional STEM partnership. Fullan's change theory is the framework used to determine progress and associated challenges with building a regional STEM educational partnership and establishment of STEM schools through a sustained education reform effort. Key stakeholders who were involved in leading this effort participated in focus groups, as well as individual interviews. Archival documentation was also used. Findings indicate implementation of STEM policy in this state experienced some barriers because of the nature of funding and timeline, as well as the competing agendas and interests of partners who did not have the opportunity to develop common vision and strategic plans prior to implementation. Implications for STEM policy decisions and implementation of other efforts through Race to the Top and other federal funding sources are discussed.  相似文献   

10.
It is a well‐known fact that, in general, many students have a lack of interest and proficiency in mathematics and science. Therefore, it is imperative that we prepare and inspire all students, specifically students of underrepresented populations, to learn science, technology, engineering, and mathematics (STEM) content. Now in its fourth year, See Blue STEM Camp was created in order to expose middle‐level students to a variety of STEM fields and STEM professionals through hands‐on project‐based learning experiences in order to increase their interest in STEM. This paper describes the structure and the activities of the camp. In this innovative project, we utilized an embedded mixed methods study design to investigate the extent middle level students' attitudes, perceptions, and interest in and toward STEM fields and careers changed after participating in an informal learning environment of a five‐day day camp held on the campus of a major university in the mid‐south. The results revealed an increase in their motivation and interest in STEM fields; in fact, there was 3% increase from pre to post in interest in STEM careers. The data also revealed that a majority of the participating middle school students found the STEM content sessions “fun” and engaging, specifically citing the hands‐on experiences they received.  相似文献   

11.
This study investigates the impact of an urban community school reform initiative that focuses on an immigrant and refugee population in middle school. A 6th–8th grade cohort of students in the community school are followed over time and compared to a propensity score matched group on overall GPA, mathematics, and science academic outcomes and traditional college preparedness indicators. Further, a deeper dive into the intersection of gender and race/ethnicity was examined on all outcomes. Findings revealed that students in the urban community school demonstrated significantly more preparedness to enroll in college and move into a STEM field if they desired compared to the matched students. All gender/racial groups in the community school performed significantly higher than those in the matched group. Further, all gender/racial groups of students in the urban community school defied standard academic achievement drops common over time in middle school, and instead increase overall, math, and science grades from 6th to 8th grade.  相似文献   

12.
Science, technology, engineering, and mathematics (STEM) integration is a desired outcome according to Next Generation Science Standards. However, learning to teach integrated STEM content has been challenging for teachers. Consequently, the purpose of this qualitative study was to describe how 16 preservice teachers enrolled in a mathematics methods course created integrated STEM lesson plans that incorporated an authentic engineering problem. Content analysis of the completed integrated STEM lesson plans used the Quality K-12 Engineering Education Framework to identify any characteristics of engineering. We found that 15 of 16 preservice teachers demonstrated at least an emerging ability to create an integrated STEM lesson that contained an engineering problem, constraints, a prototype or model, model testing, and data collection and analysis related to the model. We concluded that giving preservice teachers opportunities to experience engineering design problems could better prepare them to design and implement integrated STEM education in their classrooms. The findings from this study have practical implications for mathematics methods teacher educators who teach the pedagogy behind STEM education. This study also has theoretical implications because socially situated learning theory was extended to Model-Eliciting Activities and connected them to the K-12 Framework for Quality Engineering Education.  相似文献   

13.
The purpose of the current study was to evaluate the impact of co‐taught integrated STEM methods instruction on preservice elementary teachers’ self‐efficacy for teaching science and mathematics within an integrated STEM framework. Two instructional methods courses (Elementary Mathematics Methods and Elementary Science Methods) were redesigned to include STEM integration components, including STEM model lessons co‐taught by a mathematics and science educator, as well as a special education colleague. Quantitative data were gathered at three time points in the semester (beginning, middle, and end) from 55 preservice teachers examining teacher self‐efficacy for integrated STEM teaching. Qualitative data were gathered from a purposeful sample of seven preservice teachers to further understand preservice teachers’ perceptions on delivering integrated STEM instruction in an elementary setting. Quantitative results showed a significant increase in teacher self‐efficacy across all three time points. Item‐level analysis revealed that self‐efficacy for tasks involving engineering and assessment (both formative and summative) were low across time points, while self‐efficacy for tasks involving technology and flexibility were consistently high. Qualitative results revealed that the preservice teachers did not feel adequately prepared by university‐level science and mathematics courses, in terms of content knowledge and integration of science and mathematics for elementary students.  相似文献   

14.
Although science, technology, engineering, and mathematics (STEM) education sits at the center of a national conversation, comparatively little attention has been given to growing need for STEM teacher preparation, particularly at the elementary level. This study analyzes the outcomes of a novel, preservice STEM teacher education model. Building on both general and STEM‐specific teacher preparation principles, this program combined two traditional mathematics and science methods courses into one STEM block. Analysis compared preservice teachers in the traditional courses with those enrolled in the STEM block, investigating STEM teaching efficacy, reported and exhibited pedagogical practices, and STEM literacies using a pre‐post survey as well as analysis of lesson planning products. Linear regression models indicated that substantial growth was seen in both approaches but STEM block preservice teachers reported significantly greater gains in STEM teaching efficacy as compared with traditional‐route teachers. Lesson planning artifacts also demonstrated increased facilitation of STEM literacies, with specific attention to content integration, engineering and design, and arts inclusion. Technology and computational thinking emerged as areas for further growth and clarification in STEM teacher education models. Findings contribute to a growing research base on developing the STEM teacher workforce.  相似文献   

15.
16.
Nine years of results on 4.2 million of Indiana's Indiana Statewide Testing for Educational Progress (ISTEP) mathematics (math) exams (grades 3–10) taken after the implementation of No Child Left Behind have been used to determine gender gaps and their associated trends. Sociocultural factors were investigated by comparing math gender gaps and gap trends for (a) state public schools, (b) state nonpublic schools, (c) a low‐performing metropolitan school, and (d) a high‐performing suburban school. To control for changing sociocultural factors, multiregression analyses were conducted to predict grade‐level (3–10) gender gaps and math scale scores using socioeconomic and ethnicity variables. The underrepresentation of females in earning advanced STEM degrees was investigated by determining the gender of the highest performer on the ISTEP math exams in grades 3–10 for each of state's 292 school corporations. Boys' percentages were higher across all grades by about a 2:1 ratio, similar to high‐end results on Scholastic Aptitude Test (SAT) math exams. Simulations of distributions for d = .27 and variance ratio = 1.13 fitted 2013 college‐bound SAT math empirical data. Results of the analyses of the state's ISTEP math exam data and the 2013 SAT math scores of college‐bound seniors support the arguments that girls and young women possess the abilities to pursue STEM careers that require advanced mathematical skills.  相似文献   

17.
Mapping quantitative skills across the science, technology, engineering and mathematics (STEM) curricula will help educators identify gaps and duplication in the teaching, practice and assessment of the necessary skills. This paper describes the development and implementation of quantitative skills mapping tools for courses in STEM at a regional university that offers both on-campus and distance modes of study. Key elements of the mapping project included the identification of key graduate quantitative skills, the development of curriculum mapping tools to record in which unit(s) and at what level of attainment each quantitative skill is taught, practised and assessed, and identification of differences in the way quantitative skills are developed for on-campus and distance students. Particular attention is given to the differences that are associated with intensive schools, which consist of concentrated periods of face-to-face learning over a three-four day period, and are available to distance education students enrolled in STEM units. The detailed quantitative skills mapping process has had an impact on the review of first-year mathematics units, resulted in crucial changes to the curriculum in a number of courses, and contributed to a more integrated approach, and a collective responsibility, to the development of students' quantitative skills for both face-to-face and online modes of learning.  相似文献   

18.
Young children are capable of engaging in STEM investigations when they are guided by skilled and knowledgeable teachers. However, many elementary teachers may lack sufficient STEM content knowledge and report feeling unprepared to teach STEM content. Two university faculty members in mathematics and science education, worked to cultivate and advance two designated Elementary STEM‐Focused professional development schools through a two year series of an after‐school STEM professional development (PD) Program. As the STEM PD Program progressed, it became evident that teachers were interested in and needed more experiences with the elements of the engineering process for young learners. With this in mind, several of the PD sessions were designed to highlight the engineering process and allow teachers to experience various activities that would engage young learners. To examine how this focus on the engineering process impacted the teachers in this STEM PD Program, a research study was organized during year two of the STEM PD Program. The results of this study provide evidence that this program had a positive influence on the teacher participants’ engineering teacher efficacy and implementation of engineering lessons and activities within their classrooms.  相似文献   

19.
Increasingly, STEM focused high schools are used prepare students for college STEM majors and launch them into STEM careers. Yet a new focus on STEM education at the elementary levels suggests that the importance of STEM education is much broader than a preparation for workforce needs in high school or college. This paper describes a case study designed to articulate the mission and design of an effective and nationally recognized STEM‐focused elementary school. As described through the six most impactful components of STEM‐focused elementary school design at Walter Bracken STEAM Academy, the case study emphasizes the school's strong and inclusive school leadership, with staff organized into grade level groups empowered to innovate and honing their teaching practices. External partnerships are leveraged to broaden student learning opportunities. Students at Bracken engage in active learning opportunities and multidisciplinary lessons where STEM is used as a way of thinking and as a way to coherently combine content into active learning opportunities that are engaging for learners. By organizing the structural components of an exemplary STEM‐focused elementary school, we hope to deliver actionable reforms for elementary schools wanting to increase their STEM‐focused offerings.  相似文献   

20.
Problem-based learning (PBL) and science, technology, engineering, and mathematics (STEM) are two acronyms widely visible in education literature today. However, few studies have explored these in connection with one another, specifically with regard to teacher preparation. This study investigated how 47 prospective elementary teachers developed PBL units and how they integrated STEM and other disciplines into those units. It also addressed the affordances and constraints of integrated STEM as perceived by the prospective elementary teachers. Data sources in this multimethod study included PBL units and interviews. Findings revealed that all of the units integrated at least two of the STEM disciplines, as well as literacy, in a variety of ways. The prospective teachers articulated perceived benefits of integrated STEM, such as: making connections across content areas, preparing students for the real world, teaching students that failure is not a bad thing, and providing future opportunities. They also addressed perceived barriers of integrated STEM, such as: having limited experience with the content, diminishing the effect of individual content areas, and needing better curriculum alignment. Overall, this study provides evidence that PBL can be a pedagogical approach to integrate STEM. Implications for teachers, teacher educators, and curriculum specialists are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号