首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We have identified the phase behavior of phosphoinositol (PI) lipid extracts from bovine liver and wheat in dioleoylphosphatidylcholine (DOPC) model membranes under physiological conditions (pH 7.4) and show, for the first time, that the physicochemical properties of phosphatidylinositol lipids are capable of driving changes in membrane curvature. Ten mole percent phosphoinositol (PI) extract in DOPC is sufficient to induce the formation of the inverse hexagonal (H II) and inverse micellar cubic ( Fd3 m) phases at 37 degrees C. The phase behavior of several hydrated lipid samples was analyzed using small-angle X-ray scattering, and their lattice parameters were calculated.  相似文献   

2.
In an attempt to form HII mesophases at room temperature we prepared lyotropic liquid crystals with two surfactants of the same lipophilic tails (glycerol monooleate, GMO, and oleyl lactate, OL) but differing in the size and charge of the headgroups.Increasing OL concentration significantly affected the hydration of the headgroups and subsequently the lipids packing. At low OL content the cubic mesophase was formed, while at higher OL contents the formation of hexagonal mesophase was favored. It was assumed that OL competed on the water binding, tuning the headgroups’ curvature and the packing parameter inducing the formation of reverse hexagonal mesophase. It was detected that cubic mesophase transformed upon heating to hexagonal structures. The hexagonal mesophases, which were formed both immediately after preparation and after aging, remained stable at elevated temperatures.α-Chymotrypsinogen was solubilized into the obtained LLCs at relatively high concentration (up to 1 wt%). The lattice parameter of the host LLCs exhibited a decrease as a function of the protein content. This process was assigned to partial dehydration of the GMO polar moieties in favor to CTA hydration.Generally speaking, the present study indicated that adding anionic to nonionic lipid is highly beneficial to gain additional compositional and structural characteristics of LLCs.  相似文献   

3.
Lipid nanoparticles (LNP) containing ionizable cationic lipids are the leading systems for enabling therapeutic applications of siRNA; however, the structure of these systems has not been defined. Here we examine the structure of LNP siRNA systems containing DLinKC2-DMA(an ionizable cationic lipid), phospholipid, cholesterol and a polyethylene glycol (PEG) lipid formed using a rapid microfluidic mixing process. Techniques employed include cryo-transmission electron microscopy, (31)P NMR, membrane fusion assays, density measurements, and molecular modeling. The experimental results indicate that these LNP siRNA systems have an interior lipid core containing siRNA duplexes complexed to cationic lipid and that the interior core also contains phospholipid and cholesterol. Consistent with experimental observations, molecular modeling calculations indicate that the interior of LNP siRNA systems exhibits a periodic structure of aqueous compartments, where some compartments contain siRNA. It is concluded that LNP siRNA systems formulated by rapid mixing of an ethanol solution of lipid with an aqueous medium containing siRNA exhibit a nanostructured core. The results give insight into the mechanism whereby LNP siRNA systems are formed, providing an understanding of the high encapsulation efficiencies that can be achieved and information on methods of constructing more sophisticated LNP systems.  相似文献   

4.
Inverse lipid–water phases such as cubic phases can form kinetically stable dispersions by fragmentation in water. Cubic lipid phases can be dispersed by polar lipids favoring lamellar phases or by block copolymers, which can close the bilayer at the surface so that the hydrocarbon chain core is not exposed to water. Monodisperse particles based on glycerol monooleate, with their bilayer curved as the P-, D- or G-minimal surface, have been prepared in this way. Their inner bilayer conformation and outer shape have been examined, mainly by X-ray diffraction and cryo transmission electron microscopy. There is also a different type of cubic lipid bilayer particles with a periodicity in the micrometer range, which have been identified in phospholipid–water dispersions and in cell membrane assemblies. The mechanism behind formation in vivo of such cubic membranes, which also follow the P-, D- and G-surfaces, is discussed. Other lipid–water dispersions with lower symmetry are finally considered; dispersions formed by the inverse hexagonal phase and the dispersed state of a tetragonal bilayer structure formed by lung surfactants.  相似文献   

5.
Polar lipids from aqueous liquid-crystalline phases which are the basis for the understanding of their functionality in technical applications. The structural characteristics of these phases and the relation between chemical structure of lipid molecules and their phase properties are reviewed. Special attention is given to new results on cubic phases, the most complex of lipid-water phases. The lipid bilayer is curved in space so that there are no selfintersections. There are two water-channel systems separated by the bilayer. The characteristic feature of the cubic phases is that the lipid bilayer has zero average curvature in all points.  相似文献   

6.
We synthesize and characterize alkylthiohydroquinones (ATHs) in order to investigate their interactions with lipid model membranes, POPE and POPC. We observe the formation of structures with different morphologies, or curvature of the lipid bilayer, depending on pH and increasing temperature. We attribute their formation to changes in the balance charge/polarity induced by the ATHs. Mixtures of ATHs with POPE at pH 4 form two cubic phases, P4(3)32 and Im3m, that reach a maximum lattice size at 40 °C while under basic conditions these phases only expand upon heating from room temperature. The cubic phases coexist with lamellar or hexagonal phases and are associated with inhomogeneous distribution of the ATH molecules over the lipid matrix. The zwitterionic POPC does not form cubic phases but instead shows lamellar structures with no clear influence of the 2,6-BATH.  相似文献   

7.
Shape transformations and topological changes of lipid vesicles, such as fusion, budding, and fission, have important chemical physical and biological significance. In this paper, we study the fission process of lipid vesicles. Two distinct routes are considered that are both based on an asymmetry of the lipid distribution within the membrane. This asymmetry consists of a nonuniform distribution of two types of lipids. In the first mechanism, the two types of lipids are equally distributed over both leaflets of the membrane. Phase separation of the lipids within both leaflets, however, results in the formation of rafts, which form buds that can split off. In the second mechanism, the asymmetry consists of a difference in composition between the two monolayers of the membrane. This difference in composition yields a spontaneous curvature, reshaping the vesicle into a dumbbell such that it can split. Both pathways are studied with molecular dynamics simulations using a coarse-grained lipid model. For each of the pathways, the conditions required to obtain complete fission are investigated, and it is shown that for the second pathway, much smaller differences between the lipids are needed to obtain fission than for the first pathway. Furthermore, the lipid composition of the resulting split vesicles is shown to be completely different for both pathways, and essential differences between the fission pathway and the pathway of the inverse process, i.e., fusion, are shown to exist.  相似文献   

8.
Delivery of siRNA is a major obstacle to the advancement of RNAi as a novel therapeutic modality. Lipid nanoparticles (LNP) consisting of ionizable amino lipids are being developed as an important delivery platform for siRNAs, and significant efforts are being made to understand the structure-activity relationship (SAR) of the lipids. This article uses a combination of small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) to evaluate the interaction between cholesterol-conjugated ionizable amino lipids and biomembranes, focusing on an important area of lipid SAR--the ability of lipids to destabilize membrane bilayer structures and facilitate endosomal escape. In this study, cholesterol-conjugated amino lipids were found to be effective in increasing the order of biomembranes and also highly effective in inducing phase changes in biological membranes in vitro (i.e., the lamellar to inverted hexagonal phase transition). The phase transition temperatures, determined using SAXS and DSC, serve as an indicator for ranking the potency of lipids to destabilize endosomal membranes. It was found that the bilayer disruption ability of amino lipids depends strongly on the amino lipid concentration in membranes. Amino lipids with systematic variations in headgroups, the extent of ionization, tail length, the degree of unsaturation, and tail asymmetry were evaluated for their bilayer disruption ability to establish SAR. Overall, it was found that the impact of these lipid structure changes on their bilayer disruption ability agrees well with the results from a conceptual molecular "shape" analysis. Implications of the findings from this study for siRNA delivery are discussed. The methods reported here can be used to support the SAR screening of cationic lipids for siRNA delivery, and the information revealed through the study of the interaction between cationic lipids and biomembranes will contribute significantly to the design of more efficient siRNA delivery vehicles.  相似文献   

9.
We report the dispersions of a fatty acid and hydroxyl derivative salts in aqueous solutions that were further used to produce foams and emulsions. The tetrabutyl-ammonium salts of palmitic acid, 12-hydroxy stearic acid, and omega-hydroxy palmitic acid formed isotropic solutions of micelles, whereas the ethanolamine salts of the same acids formed turbid birefringent lamellar solutions. The structure and dimension of those phases were confirmed by small-angle neutron scattering and NMR. Micelles exhibited a surprisingly small radius of about 20 A, even for hydroxyl fatty acids, suggesting the formation of hydrogen bonds between lipids in the core of the micelles. In the case of ethanolamine salts of palmitic and 12-hydroxy stearic acids, the lipids were arranged in bilayers, with a phase transition from gel to fluid upon heating, whereas for omega-hydroxy palmitic acid, monolayers formed in accordance with the bola shape of this lipid. Foams and emulsions produced from ethanolamine salt solutions were more stable than those obtained from tetrabutyl-ammonium salt solutions. We discuss these results in terms of counterion size, lipid molecular shape, and membrane curvature.  相似文献   

10.
In our previous study (Wang, Y. Q.; Yang, C.-M.; Zibrowius, B.; Spliethoff, B.; Lindén, M.; Schüth, F. Chem. Mater. 2003, 15, 5029), mesoporous vinyl-functionalized silica (vinyl silica) with hexagonal P6mm and cubic Ia3d structures has been synthesized at different loadings of vinyl groups and at different concentrations of sodium chloride when triblock copolymer P123 was used as a template. Our further investigations presented in this article reveal that at a loading of 10% vinyl groups, well-ordered cubic Ia3d structure was obtained at a low concentration of Na2SO4 (0.5 M) and the hexagonal structure was produced at 1.0 M NaCl. When NaNO3 was used as the inorganic salt, the hexagonal structure was still maintained even at a salt concentration of 2.0 M. The result is in accordance with the Hofmeister series order (salting-out effect): SO4(2-) > Cl- > NO3(-). The lowering of the acidity also induced the formation of the cubic Ia3d structure. At 20% loading, hexagonal structure can be obtained by adding the more hydrophilic Pluronic F127 (EO106PO70EO106) to the acidic solutions of P123, but the hexagonal structure cannot be produced with pure P123 under the synthesis conditions investigated. All of these results can be rationalized through hydrophilic-hydrophobic balance and the change in micellar curvature. Furthermore, 10% mercaptopropyl-functionalized mesoporous silica with cubic Ia3d structure was designed and synthesized successfully with the assistance of an inorganic salt (NaCl) in an acidic solution of P123, which is the first example of mercaptopropyl-functionalized large-pore mesoporous silica with high loadings.  相似文献   

11.
Previous studies from this laboratory have shown that the enzymic generation of diacylglycerol in bilayers by phospholipase C may lead to membrane fusion through the formation of transient non-lamellar lipidic intermediates. The present paper intends to explore the correlations existing among the three main processes involved, namely (a) the induction (or inhibition) of lamellar-to-non-lamellar phase transitions in lipid mixtures through the addition of small (< 5 mol%) proportions of other lipids, (b) the promotion, by the latter lipids, of fusion in otherwise stable phospholipid vesicles (large unilamellar liposomes) under conditions leading to inverted hexagonal/inverted cubic phase formation in bulk lipid systems, and (c) the modulation, by the same small proportions of lipids, of phospholipase C hydrolysis of phosphatidylcholine in liposome bilayers. It is concluded that phospholipase C may give rise to non-lamellar lipidic structures that in turn permit liposomal fusion to occur, but neither enzyme activity is directly modulated by non-lamellar phase formation, nor will whatever kind of enzyme-induced non-lamellar structure give rise to fusion. Moreover, only under certain kinetic conditions will the enzyme give rise to the organization of non-lamellar structures that are conducive to the fusion event.  相似文献   

12.
Bezrukov SM  Rand RP  Vodyanoy I  Parsegian VA 《Faraday discussions》1998,(111):173-83; discussion 225-46
Lipid membranes are not passive, neutral scaffolds to hold membrane proteins. In order to examine the influence of lipid packing energetics on ion channel expression, we study the relative probabilities of alamethicin channel formation in dioleoylphosphatidylserine (DOPS) bilayers as a function of pH. The rationale for this strategy is our earlier finding that the higher-conductance states, corresponding to larger polypeptide aggregates, are more likely to occur in the presence of lipids prone to hexagonal HII-phase formation (specifically DOPE), than in the presence of lamellar L alpha-forming lipids (DOPC). In low ionic strength NaCl solutions at neutral pH, the open channel in DOPS membranes spends most of its time in states of lower conductance and resembles alamethicin channels in DOPC; at lower pH, where the lipid polar groups are neutralized, the channel probability distribution resembles that in DOPE. X-Ray diffraction studies on DOPS show a progressive decrease in the intrinsic curvature of the constituent monolayers as well as a decreased probability of HII-phase formation when the charged lipid fraction is increased. We explore how proton titration of DOPS affects lipid packing energetics, and how these energetics couple titration to channel formation.  相似文献   

13.
With a view to discovering a new family of lipids that form inverted cubic phases, the aqueous phase behavior of a series of lipids with isoprenoid-type hydrophobic chains has been examined over a temperature range from -40 to 65 degrees C by using optical microscopy, DSC (differential scanning calorimetry), and SAXS (small-angle X-ray scattering) techniques. The lipids examined are those with 5,9,13,17-tetramethyloctadecyl and 5,9,13,17-tetramethyloctadecanoyl chains linked to a series of headgroups, that is, erythritol, pentaerythritol, xylose, and glucose. All of the lipid/water systems displayed a "water + liquid crystalline phase" two-phase coexistence state when sufficiently diluted. The aqueous phase structures of the most diluted liquid crystalline phases in equilibrium with excess water depend both on the lipid molecular structure and on the temperature. Given an isoprenoid chain, the preferred phase consistently follows a phase sequence of an H II (an inverted hexagonal phase) to a Q II (an inverted bicontinuous cubic phase) to an L alpha (a lamellar phase) as A* (cross-section area of the headgroup) increases. For a given lipid/water system, the phase sequence observed as the temperature increases is L alpha to Q II to H II. The present study allowed us to find four cubic phase-forming lipid species, PEOC 18+4 [mono- O-(5,9,13,17-tetramethyloctadecyl)pentaerythritol], beta-XylOC 18+4 [1- O-(5,9,13,17-tetramethyloctadecyl)-beta- d-xylopyranoside], EROCOC 17+4 [1- O-(5,9,13,17-tetramethyloctadecanoyl)erythritol], and PEOCOC 17+4 [mono- O-(5,9,13,17-tetramethyloctadecanoyl)pentaerythritol]. The values of T K (hydrated solid-liquid crystalline phase transition temperature) of the cubic phase-forming lipids are all below 0 degrees C. Quantitative analyses of the lipid molecular structure-aqueous phase structure relationship in terms of the experimentally evaluated "surfactant parameter" allow us to rationally select an optimum combination of hydrophilic/hydrophobic part of a lipid molecule that will form a desired phase in a desired temperature range.  相似文献   

14.
Metal cations (Mn(2+) or Ca(2+)) in aqueous dispersions of mixtures of dioleoylphosphatidylethanolamine (DOPE) and poly(ethylene glycol)-functionalized DOPE (DOPE-PEG(350)) induce, above a certain amount of the PEG lipid component, a phase transition from the inverted hexagonal phase H(II) to the bicontinuous inverted cubic phase Q(224) with space group Pn3m. The process is driven by the decrease of free elastic energy due to the Gaussian curvature of the cubic phase. The structural characterization of the phase behavior over the whole explored range of DOPE-PEG/DOPE weight ratio (3-25%) is reported, focusing on the role of the metal cation in the formation of the 3D cubic lattice. This result may represent a significant progress toward a design-based approach to drug delivery.  相似文献   

15.
Cubosomes are highly stable nanoparticles formed from the lipid cubic phase and stabilized by a polymer based outer corona. Bicontinuous lipid cubic phases consist of a single lipid bilayer that forms a continuous periodic membrane lattice structure with pores formed by two interwoven water channels. Cubosome composition can be tuned to engineer pore sizes or include bioactive lipids, the polymer outer corona can be used for targeting and they are highly stable under physiological conditions. Compared to liposomes, the structure provides a significantly higher membrane surface area for loading of membrane proteins and small drug molecules. Owing to recent advances, they can be engineered in vitro in both bulk and nanoparticle formats with applications including drug delivery, membrane bioreactors, artificial cells, and biosensors. This review outlines recent advances in cubosome technology enabling their application and provides guidelines for the rational design of new systems for biomedical applications.  相似文献   

16.
In this study, we report on the lipid tail molecular shape/size effect on the mesophase self-assembly behaviors of various cationic lipids complexed with double-stranded DNA. The molecular shape of the cationic lipids was tailored from rodlike (a cyanobiphenyl imidazolium salt) to discotic (a triphenylene imidazolium salt), and finally to cubic [a polyhedral oligomeric silsesquioxane (POSS) imidazolium salt]. An increase in the cross-sectional area of the hydrophobic tails with respect to the hydrophilic imidazolium head induced a negative spontaneous curvature of the cationic lipids. As a result, a morphological change from lamello-columnar (L(C)(alpha)) phase for the DNA-cyanobiphenyl imidazolium salt (DNA-rod) and DNA-triphenylene imidazolium salt (DNA-disk) complexes to an inverted hexagonal columnar (H(C)(II)) phase for the DNA-POSS imidazolium salt (DNA-cube) complex was observed. The DNA-rod complex had a typical smectic A (SmA) L(C)(alpha) morphology, whereas the DNA-disk complex had a double lamello-columnar liquid crystalline phase. However, when the lipid tail changed to POSS, an H(C)(II) morphology was achieved. These morphological changes were successfully characterized by X-ray diffraction and transmission electron microscopy. We expect that these liquid crystalline and crystalline DNA hybrid materials may become potential functional materials for various applications such as organic microelectronics and gene transfection.  相似文献   

17.
Lipidic cubic phases (LCPs) are used in areas ranging from membrane biology to biodevices. Because some membrane proteins are notoriously unstable at room temperature, and available LCPs undergo transformation to lamellar phases at low temperatures, development of stable low‐temperature LCPs for biophysical studies of membrane proteins is called for. Monodihydrosterculin (MDS) is a designer lipid based on monoolein (MO) with a configurationally restricted cyclopropyl ring replacing the olefin. Small‐angle X‐ray scattering (SAXS) analyses revealed a phase diagram for MDS lacking the high‐temperature, highly curved reverse hexagonal phase typical for MO, and extending the cubic phase boundary to lower temperature, thereby establishing the relationship between lipid molecular structure and mesophase behavior. The use of MDS as a new material for LCP‐based membrane protein crystallization at low temperature was demonstrated by crystallizing bacteriorhodopsin at 20 °C as well as 4 °C.  相似文献   

18.
The actin cytoskeleton interacts with the cell membrane primarily through the indirect interactions of actin-binding proteins such as cofilin-1. The molecular mechanisms underlying the specific interactions of cofilin-1 with membrane lipids are still unclear. Here, we performed coarse-grain molecular dynamics simulations of cofilin-1 with complex lipid bilayers to analyze the specificity of protein-lipid interactions. We observed the maximal interactions with phosphoinositide (PIP) lipids, especially PIP2 and PIP3 lipids. A good match was observed between the residues predicted to interact and previous experimental studies. The clustering of PIP lipids around the membrane bound protein leads to an overall lipid demixing and gives rise to persistent membrane curvature. Further, through a series of control simulations, we observe that both electrostatics and geometry are critical for specificity of lipid binding. Our current study is a step towards understanding the physico-chemical basis of cofilin-PIP lipid interactions.  相似文献   

19.
A brief rewiev of membrane lipids forming cubic and reversed hexagonal phases is presented. An emphasis is made on anionic lipids and particular microbial lipids.  相似文献   

20.
Amphipathic alpha-helical peptides are often ascribed an ability to induce curvature stress in lipid membranes. This may lead directly to a bending deformation of the host membrane, or it may promote the formation of defects that involve highly curved lipid layers present in membrane pores, fusion intermediates, and solubilized peptide-micelle complexes. The driving force is the same in all cases: peptides induce a spontaneous curvature in the host lipid layer, the sign of which depends sensitively on the peptide's structural properties. We provide a quantitative account for this observation on the basis of a molecular-level method. To this end, we consider a lipid membrane with peptides interfacially adsorbed onto one leaflet at high peptide-to-lipid ratio. The peptides are modeled generically as rigid cylinders that interact with the host membrane through a perturbation of the conformational properties of the lipid chains. Through the use of a molecular-level chain packing theory, we calculate the elastic properties, that is, the spontaneous curvature and bending stiffness, of the peptide-decorated lipid membrane as a function of the peptide's insertion depth. We find a positive spontaneous curvature (preferred bending of the membrane away from the peptide) for small penetration depths of the peptide. At a penetration depth roughly equal to half-insertion into the hydrocarbon core, the spontaneous curvature changes sign, implying negative spontaneous curvature (preferred bending of the membrane toward the peptide) for large penetration depths. Despite thinning of the membrane upon peptide insertion, we find an increase in the bending stiffness. We discuss these findings in terms of how the peptide induces elastic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号