首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
New spin probes bearing the 2,2,6,6-tetramethylpiperidine-1-yloxyl covalently bound to the imidazolium ion via a methylene spacer and an amide group are synthesized. If the anion is bis(trifluoromethylsulfonylimide) instead of iodide, the new spin probe has a similar structure as that of an ionic liquid. Nevertheless, the new spin probes are useful tools to investigate ionic liquids.  相似文献   

2.
The tributylstannyl anion, Bu3Sn-, can be generated in imidazolium based ionic liquids from Me3SiSnBu3 and reacted with alpha,beta-unsaturated carbonyl compounds to afford 3-tributylstannylated products in good yields.  相似文献   

3.
In this study, novel ionic liquids formed between the 1-ethyl-3-methylimidazolium cation [emim]+ and the glycine anion [Gly]- have been investigated theoretically. The relevant geometrical characteristics, energy properties, the characters of the intermolecular hydrogen bonds (H bonds), and the possibility of proton transfer as well as IR characteristics have been systematically discussed. The natural bond orbital (NBO) and atoms in molecule (AIM) analyses have also been applied to understand the nature of the interactions between ionic pairs in ionic liquids. The most stable geometries have been determined by analyzing the relative energies and interaction energies, where the C-H...O intermolecular H bonds involving the protons attached to the imidazolium ring have been found to possess partial covalent character in nature. Electron transfers from the lone pairs of the carbonyl O atom of [Gly]- to the C-H antibonding orbital of the [emim]+ can explain the elongation and red shift of the C-H stretching frequency. The interaction modes are more favorable when the carbonyl O atoms of [Gly]- interact with the C2-H of the imidazolium ring and the C-H of the methyl group through the formation of double H bonds. The origin of the high stability of the amino acid ionic liquids observed experimentally may be attributed to the nonexistence of the proton-transferred products (neutral pairs) together with the large energy needed for separation of the ionic pairs. Additionally, the characteristics of the IR spectra have been analyzed to demonstrate the variants of the molecular structure of the [emim]+[Gly]- ionic liquids.  相似文献   

4.
The intermolecular interaction energies of ion pairs of imidazolium-based ionic liquids were studied by MP2/6-311G level ab initio calculations. Although the hydrogen bond between the C(2) hydrogen atom of an imidazolium cation and anion has been regarded as an important interaction in controlling the structures and physical properties of ionic liquids as in the cases of conventional hydrogen bonds, the calculations show that the nature of the C(2)-H...X interaction is considerably different from that of conventional hydrogen bonds. The interaction energies of the imidazolium cation with neighboring anions in the four crystals of ionic liquids were calculated. The size of the interaction is determined mainly by the distance between the imidazolium ring and anion. The calculated interaction energy is nearly inversely proportional to the distance, which shows that the charge-charge interaction is the dominant interaction in the attraction. The orientation of the anion relative to the C(2)-H bond does not greatly affect the size of the interaction energy. Calculated interaction energy potentials of 1,3-dimethylimidazolium tetrafluoroborate ([dmim][BF(4)]) complexes show that the C(2)-H bond does not prefer to point toward a fluorine atom of the BF(4). This shows that the C(2)-H...X hydrogen bond is not essential for the attraction.  相似文献   

5.
Screening of ionic liquids for extraction of flavonoids from heather   总被引:1,自引:0,他引:1  
Room temperature ionic liquids are novel solvents with the specific properties that makes them of interest for application for extraction for a wide range of compounds. In this work extraction efficiency of flavonoids from heather flowers using ionic liquids based on imidazolium cation were evaluated and compared with organic solvents. It was found that the anion of ionic liquid significantly influence the extraction yields. Flavonoid content as well as antioxidant activity based on radical scavenging on 1,1-diphenul-2-pirylhydrazyl radicals and cupric reducing antioxidant capacity increased in the order: [Bmim]PF6 < [Bmim]BF4 < [Bmim]Cl. The obtained extraction yield using [Bmim]Cl were higher than reported for 60% ethanol and ethyl acetate under similar conditions, thus, may be helpful for better utilization of heather flowers as the potential pharmaceutical and nutraceutical ingredients.  相似文献   

6.
Heterosegmented statistical associating fluid theory is used to represent the CO2 solubility in ionic liquids. As in our previous work, ionic liquid molecule is divided into several groups representing the alkyls, cation head, and anion. The cation of ionic liquid is modeled as a chain molecule that consists of one spherical segment representing the cation head and groups of segments of different types representing different substituents (alkyls). The anion of ionic liquid is modeled as a spherical segment of different type. To account for the electrostatic/polar interaction between the cation and anion, the spherical segments representing cation head and anion each have one association site, which can only cross associate. Carbon dioxide is modeled as a molecule with three association sites, two sites of type O and one site of type C, where sites of the same type do not associate with each other. The parameters of CO2 are obtained from the fitting of the density and the saturation vapor pressure of CO2. For the CO2-ionic liquid systems, cross association between site of type C in CO2 and another association site in anion is allowed to occur to account for the Lewis acid–base interaction. The parameters for cross association interactions and the binary interaction parameters used to adjust the dispersive interactions between unlike segments are obtained from the fitting of the available CO2 solubility in ionic liquids. The model is found to well represent the CO2 solubility in the imidazolium ionic liquids from 283 to 415 K and up to 200 bar.  相似文献   

7.
In the present work, three hydrophilic ionic liquids based on the combination between imidazolium cations attached with ethylene glycol polymers of various lengths and hexafluorophosphate anion were designed and synthesized for the separation of polysaccharides. By employing dextran 100 kDa as model compound, the effects of ionic liquid content, solvent/anti‐solvent volume, and temperature on its recovery efficiency were investigated systematically. The ability of these ionic liquids to precipitate dextran 100 kDa, increases with the elongation of ethylene glycol polymer chain. The established ionic liquid‐based precipitation system was successfully applied to selectively precipitate polysaccharides from water extracts of three traditional Chinese medicines and the precipitation could be achieved in about 15 min. In addition, the different precipitation responses of acidic, neutral, and basic polysaccharides in the ionic liquid‐based precipitation system and theoretical calculations both suggested that the selective precipitation of polysaccharides was probably mediated by interaction between ionic liquids and polysaccharides. The proposed strategy facilitated the isolation and purification of polysaccharides and may trigger a novel application of ionic liquids in carbohydrate research.  相似文献   

8.
Ionic liquids (ILs) have been suggested as potential "green" solvents to replace volatile organic solvents in reaction and separation processes due to their negligible vapor pressure. To develop ILs for these applications, it is important to gain a fundamental understanding of the factors that control the phase behavior of ionic liquids with other liquids. In this work, we continue our study of the effect of chemical and structural factors on the phase behavior of ionic liquids with alcohols, focusing on pyridinium ILs for comparison to imidazolium ILs from our previous studies. The impact of different alcohol and IL characteristics, including alcohol chain length, cation alkyl chain length, anion, different substituent groups on the pyridinium cation, and type of cation (pyridinium vs imidazolium) will be discussed. In general, the same type of behavior is observed for pyridinium and imidazolium ILs, with all systems studied exhibiting upper critical solution temperature behavior. The impacts of alcohol chain length, cation chain length, and anion, are the same for pyridinium ILs as those observed previously for imidazolium ILs. However, the effect of cation type on the phase behavior is dependent on the strength of the cation-anion interaction. Additionally, all systems from this study and our previous work for imidazolium ILs were modeled using the nonrandom two-liquid (NRTL) equation using two different approaches for determining the adjustable parameters. For all systems, the NRTL equation with binary interaction parameters with a linear temperature dependence provided a good fit of the experimental data.  相似文献   

9.
Laser flash photolysis is applied to study the recombination reaction of lophyl radicals in ionic liquids in comparison with dimethylsulfoxide as an example of a traditional organic solvent. The latter exhibits a similar micropolarity as the ionic liquids. The ionic liquids investigated are 1‐butyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide ( 1 ), 1‐hexyl‐3‐methylimidazolium hexafluorophosphate ( 2 ), and 1‐butyl‐3‐methylimidazolium tetafluoroborate ( 3 ). The recombination of the photolytic generated lophyl radicals occur significantly faster in the ionic liquids than expected from their macroscopic viscosities and is a specific effect of these ionic liquids. On the other hand, this reaction can be compared with the macroscopic viscosity in the case of dimethylsulfoxide. Activation parameters obtained for lophyl radical recombination suggest different, anion‐dependent mechanistic effects. Quantum chemical calculations based on density functional theory provide a deeper insight of the molecular properties of the lophyl radical and its precursor. Thus, excitation energies, spin densities, molar volumes, and partial charges are calculated. Calculations show a spread of spin density over the three carbon atoms of the imidazolyl moiety, while only low spin density is calculated for the nitrogens.  相似文献   

10.
Tang F  Wu K  Nie Z  Ding L  Liu Q  Yuan J  Guo M  Yao S 《Journal of chromatography. A》2008,1208(1-2):175-181
Amino acid ionic liquids (AAILs) containing imidazolium cations and amino acid (AA) anions, were synthesized and applied as task-specific ionic liquids. A sensitive and fast liquid chromatography-mass spectrometry (LC-MS) method was established for the quantitative analysis of 20 AAILs. Using ion pairing-reversed phase liquid chromatography technique, heptafluorobutyric acid was used as ion-pairing reagent to increase the retention of AAILs. Based on the zwitterionity of amino acid, this method was proposed to determine both the cation and the anion of AAILs simultaneously. The limit of detection of this method is down to 1-15ng/mL and the analysis time is less than 15min. According to the analytical data of seven selected AAILs, we found that the content of amino acid anion is always lower than that of butyl methyl imidazolium cation in AAILs. Moreover, the molar ratio of imidazolium cation to amino acid anion is dependent on the chemical property of the amino acid. These results supplied useful information on the interaction of imidazolium cation with acidic, basic, neutral and non-polar amino acids in AAILs.  相似文献   

11.
The photo-, thermo- and solvatochromic properties of 2,3-dihydro-1',3',3'-trimethyl-6-nitrospiro-[1-benzopyran-2,2'-1H-indole] (BSP-NO(2)) were studied in ILs containing the anion [NTf(2)](-) by UV-Vis absorption spectroscopy, ab initio molecular orbital theory and density functional theory (DFT) calculations. It was found that the kinetics and thermodynamics of the BSP-NO(2) <--> MC (merocyanine) equilibrium was sensitive to the nature of the cation. It was also observed that the imidazolium cation can form a through-space orbital interaction with the MC isomer, rather than a simple electrostatic interaction, thus preventing the MC conversion back to the BSP-NO(2) isomer. The BSP-NO(2) <--> MC equilibrium thus serves as a model system for studying modes of interaction of the cations in ionic liquids.  相似文献   

12.
Carbon nanodots (C‐dots) with an average size of 1.5 and 3.0 nm were produced by laser ablation in different imidazolium ionic liquids (ILs), namely, 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate (BMI.BF4), 1‐n‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2) and 1‐n‐octyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (OMI.NTf2). The mean size of the nanoparticles is influenced by the imidazolium alkyl side chain but not by the nature of the anion. However, by varying the anion (BF4 vs. NTf2) it was possible to detect a significant modification of the fluorescence properties. The C‐dots are much probably stabilised by an electrostatic layer of the IL and this interaction has played an important role with regard to the formation, stabilisation and photoluminescence properties of the nanodots. A tuneable broadband fluorescence emission from the colloidal suspension was observed under ultraviolet/visible excitation with fluorescence lifetimes fitted by a multi‐exponential decay with average values around 7 ns.  相似文献   

13.
We have demonstrated that the surface wettability of negatively charged polyimide films could be tuned by electrostatic self-assembly of ionic liquids. The water contact angles of the polyimide films varied in the range 27-80 degrees for 13 different ionic liquids based on imidazolium and ammonium salts. The surface morphology of the resulting surfaces was characterized using atomic force microscopy. The results revealed that the assembly of longer-substituent cations was characterized by the formation of spherical nanoparticles that were formed due to sequent aggregation of cations on those electrostatically assembled ones via hydrophobic interaction. In this case, the counteranions are present in the assembled layers and the wettability is accordingly affected. Whereas for shorter-substituent cations, no aggregates were formed due to the less hydrophobic interaction than the electrostatic repulsive interaction between the cations, and the counteranions were absent from the assembled layers. This method can also be utilized to quantify the hydrophobicity of various ionic liquids.  相似文献   

14.
Bukuo Ni 《Tetrahedron letters》2007,48(11):1999-2002
Six novel imidazolium salts, which contain a chiral moiety as well as a fused-ring system, have been designed, synthesized, and fully characterized. The synthesis of these ionic liquids is concise and practical due to the commercial availability of the starting materials. These imidazolium compounds were readily prepared from 1-methyl-2-imidazoliumcarboxaldehyde and chiral amino alcohols. Salts that contain the PF6 anion were solids, but salts with the NTf2 anion were liquids at room temperature. We envision that these new chiral imidazolium compounds can serve as effective reaction media as well as chiral catalysts for asymmetric reactions, which are presently being investigated in our lab.  相似文献   

15.
We present a systematic investigation on the enthalpic assessment of the interactions operating between the cation and anion of four imidazolium ionic liquids with aqueous and various nonaqueous solvents. Accurate experimental information gathered with the help of an isothermal titration calorimeter at 298.15 K has been analyzed for excess partial molar enthalpy of the ionic liquid, H(IL)(E), in terms of hydrophobic and solvation effects. The variations in the limiting excess partial molar enthalpy of the ionic liquid, H(IL)(E, ∞), have been correlated with solvent properties. We have quantified the enthalpic effects due to dissociation of ionic liquids in very dilute solutions and to clathrate formation with the increasing concentration of ionic liquid. A change in enthalpic behavior from endothermic to exothermic is observed on increasing the carbon chain length attached to the imidazolium ring. The solvent reorganization around the cationic species has been unraveled by employing the ionic liquid interaction parameters called as H(IL-IL)(E) deduced from the H(IL)(E) data. The apparent relative molar enthalpy, φ(L), derived from H(IL)(E) data has been examined in the light of the specific ion interaction theory as advanced by Pitzer with accurate results.  相似文献   

16.
In this work, the geometrical and electronic properties of the mono cationic ionic liquid 1‐hexyl‐3‐methylimidazolium halides ([C6(mim)]+_X?, X=Cl, Br and I) and dicationic ionic liquid 1,3‐bis[3‐methylimidazolium‐1‐yl]hexane halides ([C6(mim)2X2], X=Cl, Br and I) were studied using the density functional theory (DFT). The most stable conformer of these two types ionic liquids (IL) are determined and compared with each other. Results show that in the most stable conformers, in both monocationic ILs and dicationic ILs, the Cl? and Br? anions prefer to locate almost in the plane of the imidazolium ring whereas the I? anion prefers nearly vertical location respect to the imidazolium ring plan. Comparison of hydrogen bonding and ionic interactions in these two types of ionic liquids reveals that these ionic liquids can be formed hydrogen bond by Cl? and Br? anion. The calculated thermodynamic functions show that the interaction of cation — anion pair in the dicationic ionic liquids are more than monocationic ionic liquids and these interactions decrease with increasing the halide anion atomic weight.  相似文献   

17.
Highly reversible, safe lithium secondary batteries that use imidazolium-cation-based room-temperature ionic liquid as an electrolyte and lithium metal as an anode material were realized by the molecular design. To achieve higher reduction stability, an electron-donating substituent was introduced to promote charge delocalization in the imidazolium cation of room-temperature ionic liquids.  相似文献   

18.
Lu Y  Lu W  Wang W  Guo Q  Yang Y 《Talanta》2011,85(3):1621-1626
The ionic liquid/aqueous two-phase extraction systems (ATPSs) based on imidazolium ionic liquids were used to extract cytochrome c. Effects of the alkyl chain length of the ionic liquid cations, concentration of potassium citrate, temperature and pH on the extraction efficiency have been investigated. The thermodynamic parameters (ΔG(T)°, ΔH(T)° and ΔS(T)°) associated with Cyt-c partitioning in aqueous two phase systems were determined. Thermodynamic studies indicated that the partitioning of Cyt-c was driven by both hydrophobic and electrostatic interactions in the extraction process. Under the optimum conditions, experiment results showed that 94% of the cytochrome c could be extracted into the ionic liquid-rich phase in a one-step extraction. The structural characterization of Cyt-c in the IL ATPS was investigated by UV-vis and circular dichroism (CD) spectra. The results demonstrated that no direct bonding interaction observed between ionic liquid and cytochrome c, while the native properties of the cytochrome c were not altered. Compared with traditional liquid-liquid extractions based on toxic organic solvents, ionic liquid/aqueous two phase extraction offers clear advantages due to no use of volatile organic solvent and low consumption of imidazolium ionic liquids.  相似文献   

19.
The relevance of anion structure on the shape regulating effect of 3-ethyl-1-methylimidazolium-based ionic liquids during the seed-induced growth of gold nanocrystals is evaluated for the particular case of lactate, acetate, methylsulfate, ethylsulfate and tosylsulfonate anion systems. Carboxylate-based anions (lactate and acetate) are found to inhibit the reduction of the gold precursor salt presumably due to the deprotonation of the reducing agent ascorbic acid. The formation of non-uniform, 'head-tail'-type anisotropic particle structures is observed in both methyl- and ethylsulfate anion systems whereas rapid precipitation is observed in the case of tosylsulfonate anions. The particular efficiency of the ethylsulfate solvent system in promoting shape anisotropic growth is interpreted to be a consequence of both reduced anion/cation interactions that act to support the coordination of imidazolium to the metal surface and the enhanced capacity of anions to participate in the particle stabilization process.  相似文献   

20.
以H2O2为氧化剂,研究了离子液体为催化剂和溶剂,环己烯氧化生成反-1,2-环己二醇的反应。 考察了不同咪唑型离子液体、反应时间、反应温度和H2O2用量等对产率和选择性的影响, 实验结果表明,在7种咪唑型离子液体催化体系中,阳离子为咪唑环上含有1或2个羧基,阴离子为[PF6]的离子液体催化效果较好。 反应温度为100 ℃,n(H2O2)∶n(Cyclohexene)=1.1∶1,反应5 h时,离子液体c(0.60 g,2.1 mmol)催化生成的反-1,2-环己二醇的产率和选择性分别为95%和97%,而离子液体f(0.20 g,0.6 mmol)催化生成的反-1,2-环己二醇的产率和选择性分别为84%和90%,从离子液体的用量来看,含2个羧基的离子液体f的催化效率更高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号