首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A promising strategy of thermally activated delayed fluorescence (TADF) sensitized circularly polarized luminescence (CPL) has been proposed for improving the electroluminescence efficiencies of circularly polarized fluorescent emitters. Compared with chiral TADF emitters which suffer from the dilemma of small ΔEST accompanied by small kr, the TADF-sensitized CPL (TSCP) strategy using TADF molecules as sensitizers and CP-FL molecules as emitters might be the most promising method to construct high-performance circularly polarized organic light-emitting diodes (CP-OLEDs). Consequently, by taking advantage of the theoretically 100 % exciton utilization of TADF sensitizers, especially, by designing CP-FL emitters with high PLQY, narrow FWHM and large glum values, TSCP-type CP-OLEDs with excellent overall performances can be realized.  相似文献   

2.
The synthesis of chiral C1‐symmetrical copper(I) complexes supported by chiral carbene ligands is described. These complexes are yellow emitters with modest quantum yields. Circularly polarized luminescence (CPL) spectra show a polarized emission band with dissymmetry factors |glum|=1.2×10?3. These complexes are the first reported examples of molecular copper(I) complexes exhibiting circularly polarized luminescence. In contrast with most CPL‐emitting molecules, which possess either helical or axial chirality, the results presented show that simple chiral architectures are suitable for CPL emission and unlock new synthetic possibilities.  相似文献   

3.
Luminescent exciplexes based on a chiral electron donor and achiral acceptors are reported as a new approach to design circularly polarized (CP) and thermally activated delayed fluorescence (TADF) emitters. This strategy results in rather high CP luminescence (CPL) values with glum up to 7×10−3, one order of magnitude higher in comparison to the CPL signal recorded for the chiral donor alone (glum ∼7×10−4). This increase occurs concomitantly with a CPL sign inversion, as a result of the strong charge-transfer emission character, as experimentally and theoretically rationalized by using a covalent chiral donor-acceptor model. Interestingly, blue, green-yellow and red chiral luminescent exciplexes can be obtained by modifying with the electron accepting character of the achiral unit while keeping the same chiral donor unit. These results bring new (inter)molecular guidelines to obtain simply and efficiently multi-color CP-TADF emitters.  相似文献   

4.
《中国化学快报》2023,34(3):107649
It is of great significance to construct organic circularly polarized luminescence systems (CPL) with large luminescence dissymmetry factors (glum) for practical applications. Here we report organic CPL systems constructed by merging triplet-triplet annihilation upconversion chromophores in cellulose matrices. The chirality of the matrix is transferred to the achiral chromophores of photon upconversion and then the multistep energy transfer processes of upconversion amplify glum. The glum value of upconversion CPL in the left-handed ethyl cellulose and the right-handed (acetyl) ethyl cellulose are up to +0.1 and ?0.15, respectively. The study provides a straightforward approach for constructing solid organic upconversion CPL materials with large glum, which may expand the application potentials of organic chiroptical materials.  相似文献   

5.
Chiral zero-dimensional hybrid metal halides (0D HMHs) could combine excellent optical properties and chirality, making them promising for circularly polarized luminescence (CPL). However, chiral 0D HMHs with efficient CPL have been rarely reported. Here, we propose an efficient strategy to achieve simultaneously high photoluminescence quantum yield (PLQY) and large dissymmetry factor (glum), by integrating achiral and chiral ligands into 0D HMHs. Specifically, three pairs of chiral 0D hybrid indium-antimony chlorides are synthesized by combing achiral guanidine with three types of chiral methylbenzylammonium-based derivatives as the organic cations. These chiral 0D HMHs exhibit near-unity PLQY and large glum values up to around ±1×10−2. The achiral guanidine ligand is not only essential to crystallize these hybrid indium-antimony chlorides to achieve near-unity PLQYs, but also greatly enhances the chirality induction from organic ligands to inorganic units in these 0D HMHs. Furthermore, the choice of different chiral ligands can modify the strength of hydrogen bonding interactions in these 0D HMHs, to maximize their glum values. Overall, this study provides a robust way to realize efficient CPL in chiral HMHs, expanding their applications in chiroptical fields.  相似文献   

6.
The synthesis of chiral C1-symmetrical copper(I) complexes supported by chiral carbene ligands is described. These complexes are yellow emitters with modest quantum yields. Circularly polarized luminescence (CPL) spectra show a polarized emission band with dissymmetry factors |glum|=1.2×10−3. These complexes are the first reported examples of molecular copper(I) complexes exhibiting circularly polarized luminescence. In contrast with most CPL-emitting molecules, which possess either helical or axial chirality, the results presented show that simple chiral architectures are suitable for CPL emission and unlock new synthetic possibilities.  相似文献   

7.
A chiral zeolitic imidazolate framework (ZIF) showing circularly polarized luminescence (CPL) has been successfully constructed by blending binapthyl‐derived chiral emitters with ZIF‐8 rhombic dodecahedron nanoparticles. This approach solves a major trade‐off in CPL‐active materials: the large luminescence dissymmetry factor (glum) always suffers from suppression of luminescence efficiency. Compared to the optical properties of chiral emitters, the obtained chiral ZIF nanomaterials showed an enhanced fluorescence efficiency while the |glum| value is significantly amplified by one order of magnitude. Additionally, enantioselective fluorescence sensing in response to α‐hydroxycarboxylic acids has been enhanced in chiral ZIFs. Reorganization and conjunction of chiral emitters to the skeleton of ZIF nanoparticles can greatly improve both the luminescence quantum yield and circularly polarization, which facilitates the design of more efficient chiroptical materials.  相似文献   

8.
9.
Achieving a large dissymmetry factor (glum) is a challenge in the field of circularly polarized luminescence (CPL). A chiral charge‐transfer (CT) system consisting of chiral electron donor and achiral electron acceptor shows bright circularly polarized emission with large glum value. The chiral emissive CT complexes could be fabricated through various approaches, such as grinding, crystallization, spin coating, and gelatinization, by simply blending chiral donor and achiral acceptor. The structural synergy originating from π–π stacking and strong CT interactions resulted in the long‐range ordered self‐assembly, enabling the formation of supramolecular gels. Benefiting from the large magnetic dipole transition moment in the CT state, the CPL activity of CT complexes exhibited large circular polarization. Our design strategy of the chiral emissive CT complexes is expected to help the development of new molecular engineering strategies for designing highly efficient CPL‐active materials.  相似文献   

10.
This work reports the first observation of circularly polarized electroluminescence (CPEL) in thin films of self-organized oligothiophenes. Four new 1,4-phenylene and 9H-carbazole-based oligothiophenes were ad hoc designed to ensure efficient spontaneous formation of chiral supramolecular order. They were easily synthesized and their chiroptical properties in thin films were measured. Circularly polarized luminescence (CPL) spectra revealed glum in the order of 10−2 on a wide wavelengths range, originating from their self-organized chiral supramolecular organization. These molecules have reasonable properties as organic semiconductors and for this reason they can constitute the active layer of circularly-polarized organic light-emitting diodes (CP-OLEDs). Thus, we could investigate directly their electroluminescence (EL) and CPEL, without resorting to blends, but rather in a simple multilayer device with basic architecture. This is the first example of a CP-OLED with active layer made only of a small organic compound.  相似文献   

11.
《中国化学快报》2020,31(11):2921-2924
A new chiral bromobinaphthol-pyrene compound was developed to achieve a green circularly polarized luminescence (CPL) from its excimer with a dissymmetry factor (|glum|) value of 4.3 × 10−3 and a high quantum yield ΦF, solid up to 55.9%, while no CPL signals could be observed for the blue luminescence from unimolecule. Meanwhile, reversal CPL signals can be observed from both concentrated solution and solid  相似文献   

12.
It is essential to create organic compounds that exhibit circularly polarized luminescence (CPL) in the near-infrared (NIR) range. Helicene-type emitters possess appealing chiroptical features, however, such NIR molecules are scarce due to a paucity of synthetic strategies. Herein, we developed a series of helical β-isoindigo-based B−O−B bridged aza-BODIPY analogs that were synthesized conveniently. The reaction of diimino-β-isoindigo with a heteroaromatic amine produced a restricted ligand cavity, which triggered off the generation of a B−O−B bridge. The B−O−B bridge led to distorted conformations that satisfy the helical requirements, resulting in excellent spectroscopic and chiroptical properties. Tunable CPL with the highest luminescence dissymmetry factor (glum) of 1.3×10−3 and a CPL brightness (BCPL=11.5 M−1 cm−1) in the NIR region was achieved. This synthetic approach is expected to offer a new opportunity to chiral chemistry and increase flexibility for chiroptical tuning.  相似文献   

13.
《中国化学快报》2023,34(6):107934
Realizing both a high emission efficiency and luminescence dissymmetry factor (glum) in circularly polarized solution processable organic light-emitting diodes (CP-OLEDs) remains a significant challenge. In this contribution, two chiral phosphorescent liquid crystals based on cyclometalated platinum complexes are prepared, in which the chiral s-2-methyl-1‑butyl group is introduced into the cyclometalating ligand and the mesogenic fragment is attached to the periphery of the ancillary ligand. The platinum complexes exhibit both smectic and chiral nematic phases as evidenced by polarized optical microscopy, differential scanning calorimetry and small-angle X-ray diffraction. Remarkably, a high photoluminescent quantum efficiency of over 78% and clear circularly polarized luminescent signal with gPL of about 10–2 are observed for the complexes. Further, solution-processed CP-OLEDs show maximum external quantum efficiencies (EQE) of over 15% and strong circularly polarized electroluminescent signals with a gEL ≈ 10–2. This research demonstrates that both liquid crystallinity and the number of chiral centers play key roles in improving the chiroptical property, paving the way for a new approach for the design of high-efficiency CPL emitters.  相似文献   

14.
Molecular motions are closely associated with the behaviors and properties of organic materials. However, monitoring molecular motions is challenging. Herein, a chiral supramolecular system consisting of L-/D-phenylalanine (LPF/DPF) as a chiral inducer and an achiral tetraphenylethene derivative (TPEF) as a molecular rotor has been proposed and explored for real-time discriminating the supramolecular motions by the visualization of circularly polarized luminescence (CPL) signal variations. Derived from the ordered molecular motions of TPEF induced by LPF/DPF, highly organized aggregates have been progressively assembled in a controlled manner with differentiated morphologies, including spherical particles, one-dimensional fibers, and floor-shaped supercrystals. Notably, increasing level of ordered aggregates, in turn, led to quenching emissions, while the CPL signals have been dramatically amplified accompanying by a sharp enhancement of luminescence dissymmetry factors (glum) from nearly 0 to −0.1. The significant amplification of CPL is attributed to the ordered aggregates of supramolecules, leading to the decrease of electric transition dipole moments in supramolecular system. As a result of the chiral supramolecular motions powered by supramolecular crystallization, the supramolecular motions are conveniently discriminated by visual CPL signal variation with an enhancement of glum value from 0 to −0.1 in real time.  相似文献   

15.
Helically chiral N,N,O,O‐boron chelated dipyrromethenes showed solution‐phase circularly polarized luminescence (CPL) in the red region of the visible spectrum (λem(max) from 621 to 663 nm). The parent dipyrromethene is desymmetrised through O chelation of boron by the 3,5‐ortho‐phenolic substituents, inducing a helical chirality in the fluorophore. The combination of high luminescence dissymmetry factors (|glum| up to 4.7 ×10?3) and fluorescence quantum yields (ΦF up to 0.73) gave exceptionally efficient circularly polarized red emission from these simple small organic fluorophores, enabling future application in CPL‐based bioimaging.  相似文献   

16.
Circularly polarized luminescence (CPL) was observed in pyrene zipper arrays helically arranged on an RNA duplex. Hybridization of complementary RNA strands having multiple (two to five) 2′‐O‐pyrenylmethyl modified nucleosides affords an RNA duplex with normal thermal stability. The pyrene fluorophores are assembled like a zipper in a well‐defined helical manner along the axis of RNA duplex, which, upon 350 nm UV illumination, resulted in CPL emission with pyrene excimer formation. CPL (glum) levels observed for the pyrene arrays in dilute aqueous solution were +2×10?2–+3.5×10?2, which are comparable with |glum| for chiral organic molecules and related systems. The positive CPL signals are consistent with a right‐handed helical structure. Temperature dependence on CPL emission indicates that the stable rigid RNA structure is responsible for the strong CPL signals. The single pyrene‐modified RNA duplex did not show any CPL signal.  相似文献   

17.
Chiral nanographenes with both high fluorescence quantum yields (ΦF) and large dissymmetry factors (glum) are essential to the development of circularly polarized luminescence (CPL) materials. However, most studies have been focused on the improvement of glum, whereas how to design highly emissive chiral nanographenes is still unclear. In this work, we propose a new design strategy to achieve chiral nanographenes with high ΦF by helical π-extension of strongly luminescent chromophores while maintaining the frontier molecular orbital (FMO) distribution pattern. Chiral nanographene with perylene as the core and two dibenzo[6]helicene fragments as the wings has been synthesized, which exhibits a record high ΦF of 93 % among the reported chiral nanographenes and excellent CPL brightness (BCPL) of 32 M−1 cm−1.  相似文献   

18.
Generating circularly polarized luminescence (CPL) with simultaneous high photoluminescence quantum yield (PLQY) and dissymmetry factor (glum) is difficult due to usually unmatched electric transition dipole moment (μ) and magnetic transition dipole moment (m) of materials. Herein we tackle this issue by playing a “cascade cationic insertion” trick to achieve strong CPL (with PLQY of ~100 %) in lead-free metal halides with high glum values reaching −2.3×10−2 without using any chiral inducers. Achiral solvents of hydrochloric acid (HCl) and N, N-dimethylformamide (DMF) infiltrate the crystal lattice via asymmetric hydrogen bonding, distorting the perovskite structure to induce the “intrinsic” chirality. Surprisingly, additional insertion of Cs+ cation to substitute partial (CH3)2NH2+ transforms the chiral space group to achiral but the crystal maintains chiroptical activity. Further doping of Sb3+ stimulates strong photoluminescence as a result of self-trapped excitons (STEs) formation without disturbing the crystal framework. The chiral perovskites of indium-antimony chlorides embedded on LEDs chips demonstrate promising potential as CPL emitters. Our work presents rare cases of chiroptical activity of highly luminescent perovskites from only achiral building blocks via spontaneous resolution as a result of symmetry breaking.  相似文献   

19.
A variety of carbazolyl-appended Schiff bases were readily synthesized from 1-formylcarbazoles and aniline derivatives. Boron complexation of the resulting ligands allowed for facile preparation of new carbazole-based BODIPY analogues showing solid-state fluorescence. Furthermore, some dyes were converted into chiral compounds through the Et2AlCl-mediated incorporation of a binaphthyl unit. The chiral dyes showed aggregation-induced fluorescence and circularly polarized luminescence (CPL) with the ΦF and glum of up to 0.22 and −3.5×10−3, respectively, in the solid state. The solid-state fluorescence and CPL were well characterized by the crystal packing analyses and DFT calculations.  相似文献   

20.
The enantioselective synthesis of chiral [7]-helical dispirodihydro[2,1-c]indenofluorenes (DSF-IFs) was achieved for the first time in good yields with high er values (er up to 99 : 1). The crucial step of the whole reaction sequence was the enantioselective intramolecular [2+2+2] cycloaddition of tethered triynediols to indenofluorenediols, which was catalyzed by a Rh/SEGPHOS® complex. Further transformations led to the corresponding DSF-IFs. The prepared helically chiral DSF-IFs combine circularly polarized luminescence (CPL) activity (glum=∼10−3) with exceptionally high fluorescence quantum yields (up to Φlum=0.97).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号