首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the case of turbine combustors operating with liquid fuel the combustion process is governed by the liquid fuel atomization and its dispersion in the combustion chamber. By highly unsteady flow field conditions the transient interaction between the liquid and the gaseous phase is of interest, because it results in a temporal variation of air–fuel ratio which leads to a fluctuating temperature distribution. The objective of this research was the investigation of transient flow field phenomena (e.g. large coherent structures) on droplet dynamics and dispersion of an isothermal flow (of inert water droplets) as a necessary first step towards a full analysis of spray combustion in real-life devices. The advanced injector system for lean jet engine combustors PERM (Partial Evaporated Rapid Mixing) was applied, generating a dilute polydispersed spray in a swirled flow field. Experiments were performed using Phase Doppler Anemometry (PDA) and a patternator to determine the droplet polydispersity, concentration maps, and velocity profiles in the flow. An important finding is the effect of large-scale coherent structures due mainly to the precessing of the vortex core (PVC) of the swirling air jet on the particle dispersion patterns. The experimental results then serve as reference data to assess the accuracy of the Eulerian–Lagrangian computations using a Large Eddy Simulation (LES), a Unsteady Reynolds-Average Navier–Stokes Simulation (URANS) and two simplified (steady-state) simulations. There, a simplified droplet injection model was used and the required boundary conditions of injected droplet sizes were obtained from measurements. Important transient effects of deterministic droplet separation observed during experiments, could be perfectly replicated with this injection model. It is convincingly shown, through extensive computations, that the resolution of instantaneous vortical structures is indeed crucial; hence the LES, or a reasonably-well resolved URANS are preferred over the steady-state solutions with additional, stochastic-type, turbulent dispersion models.  相似文献   

2.
Deposition of amorphous particles, as a prevalent problem particularly in the spray drying of fruit and vegetable juices, is due to low-molecular weight sugars and is strongly dependent on the condition of the particles upon collision with the dryer wall. This paper investigates the condition of the amorphous particles impacting the wall at different drying conditions with the aim of elucidating the deposition mechanism and physical phenomena in the drying chamber. A model sucrose-maltodextrin solution was used to represent the low-molecular-weight sugar. Particle deposits were collected on sampling plates placed inside the dryer for analyses of moisture content, particle rigidity (using SEM) and size distribution. Moisture content was adopted as a general indicator of stickiness. Product particles collected at the bottom of the experimental dryer were found to have higher moisture than particle deposits on samplers inside the dryer. Moisture content profile in the dryer shows that apart from the atomizer region, where particles are relatively wet, particle deposits at other regions exhibit similar lower moisture content. At the highest temperature adopted in the experiments, particles became rubbery suggesting liquid-bridge formation as the dominant deposition mechanism. Further analysis on particles size distribution reveals a particle segregation mechanism whereby smaller particles follow preferentially to the central air stream while larger particles tend to re-circulate in the chamber, as predicted in past CFD simulation. The findings from this work will form the basis and provide validating data for further modeling of wall deposition of amorphous particles in spray drying using CFD.  相似文献   

3.
A knowledge of the trajectories of atomized droplets in both the nozzle zone (where the droplets are rapidly decelerating from their initial high velocity) and in the free-entrainment zone (where the droplets are conveyed by the drying gas) is required for the design of spray dryers, since it governs the evaporative capacity and thermal efficiency of the chamber, while affecting the moisture content and general quality of the product through the control of the drying time.

The trajectories of droplets in three-dimensional motion were determined theoretically in both zones. In the case of two-fluid pneumatic atomizers, the characteristics of the jet of atomizing fluid were found to be important in both the zones.

Predictions of droplet trajectories were tested in an experimental circular cocurrent spray-drying chamber with a conical bottom, in which the drying air was introduced tangentially near the top. Water was used as the feed material. A study was made of the effects of liquid feed rate and temperature, drying air flowrate and temperature, and of nozzle position on the thermal efficiency and evaporative capacity of the chamber. The results were interpreted in the light of the droplet trajectories predicted.  相似文献   


4.
In this paper, we focused on modeling the collision phenomenon between two liquid droplets for application in spray simulations. It has been known that the existing O’Rourke collision model widely used in CFD codes is inaccurate in determining collision outcomes and droplet behavior. In addition, since the collision probability of the model follows a statistical approach involving computational cell geometry, the prediction results should be strongly dependent on the cell size. As a result, to more accurately calculate droplet collisions, the technique for predicting the droplet velocity and its direction after collision must be extended for use in spray modeling. Further, it is also necessary to consider all the possible collision outcomes, such as bouncing, stretching separation, reflexive separation and coalescence. Therefore, this paper describes the appropriateness of a composite concept for modeling collision outcomes and the implementation of deterministic collision algorithms into a multidimensional CFD code for the calculation of post-collisional droplet movements. Furthermore, the existing model does not consider the formation of satellite droplets. For this reason, our present modeling concept includes a fragmenting droplet collision model. Using the present model, we have validated the collision interactions between liquid droplets under high Weber number conditions by comparing our calculations with experimental results from a binary droplet collision. This paper also deals with the application of the model to inter-impingement sprays by analyzing the atomization characteristics, such as mean droplet size and velocity, spray tip penetrations and spray-shapes of the impinging spray using the suggested collision algorithms and then comparing the results with available experimental data.  相似文献   

5.
A general procedure has been developed for the simulation of charged liquid and electrostatically atomized sprays. The procedure follows a Lagrangian approach for simulation of spray droplets and a Eulerian approach for gas‐phase variables, including the electric field generated by the charge presence on droplets. Validation of the procedure was examined through simulations of previously published charged spray experiments. Results showed that for the specification of initial droplet charge, modelling the droplet charge–diameter relationship through a scaling law is as reliable a method as using a directly obtained charge–diameter relationship from experimental measurements. The normalized root‐mean‐square errors for sprays using the two methods were shown to be within 12% of one another, for the prediction of spatially averaged profiles of mean droplet diameters, mean axial velocities and mean radial droplet velocities. Results showed that the general spatial characteristics and dynamics of a charged liquid spray can successfully be reproduced, including the axial and radial dispersal pattern of droplets and the distribution of mean droplet diameters throughout the spray plume. For all sprays with droplet charges defined through a scaling law relationship, the normalized root‐mean‐square errors range from 9.0% to 31.6% for mean droplet diameters, 10.4% to 67.9% for mean axial droplet velocities and 16.8% to 38.6% for mean radial droplet velocities. Lastly, we present a brief set of general recommendations for simulating electrostatically atomized dielectric liquid sprays.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A theoretical model is developed in the present study to simulate droplet motion and the evolution of droplet size distribution (DSD) in two-phase air/dispersed water spray flows. The model takes into account several processes which influence DSD and droplet trajectory: droplet collision and coalescence, evaporation and cooling, gravitational settling, and turbulent dispersion of dispersed phase. The DSDs determined by the model at different locations in a two-phase flow are evaluated by comparing them to experimental observations obtained in an icing wind tunnel. The satisfactory coincidence between simulation and experimental results proves that the model is reliable when modeling two-phase flows under icing conditions. The model is applied for two particular examples in which the modification of DSD is calculated in two-phase flows under conditions describing in-cloud icing and freezing drizzle.  相似文献   

7.
An experimental study of a simple jet flow, which contains a dispersion of fine droplets, has been carried out in order to investigate the effect of turbulence, evaporation and coalescence on the droplet size distributions within the jet. Very little evaporation occurs in the potential core of the jet, while in the far-field, where the potential core has vanished and the droplets disperse more readily, evaporation occurs predominantly in the outer portions of the spray. Evidently, turbulence enhances the evaporation rate of droplets at the edges of the spray, and fresh air entrained from the outer regions increases the evaporative driving force. Coalescence has also been observed within the spray, although this effect is rather subtle compared to the evaporation effect in the dilute jets investigated here. Nevertheless, sufficient measurements have been taken to validate, at least partially, any coalescence models, in addition to any turbulence and evaporation models for dilute poly-disperse sprays.  相似文献   

8.
9.
A new approach for simultaneous planar measurement of droplet velocity and size with gas phase velocities is reported, which combines the out-of-focus imaging technique ‘Interferometric Laser Imaging Droplet Sizing’ (ILIDS) for planar simultaneous droplet size and velocity measurements with the in-focus technique ‘Particle Image Velocimetry’ (PIV) for gas velocity measurements in the vicinity of individual droplets. Discrimination between the gas phase seeding and the droplets is achieved in the PIV images by removing the glare points of focused droplet images, using the droplet position obtained through ILIDS processing. Combination of the two optical arrangements can result in a discrepancy in the location of the centre of a droplet, when imaging through ILIDS and PIV techniques, of up to about 1 mm, which may lead to erroneous identification of the glare points from droplets on the PIV images. The magnitude of the discrepancy is a function of position of the droplet’s image on the CCD array and the degree of defocus, but almost independent of droplet size. Specifically, it varies approximately linearly across the image along the direction corresponding to the direction of propagation of the laser sheet for a given defocus setting in ILIDS. The experimental finding is supported by a theoretical analysis, which was based on geometrical optics for a simple optical configuration that replicates the essential features of the optical system. The discrepancy in the location was measured using a monodisperse droplet generator, and this was subtracted from the droplet centres identified in the ILIDS images of a polydisperse spray without ‘seeding’ particles. This reduced the discrepancy between PIV and ILIDS droplet centres from about 1 mm to about 0.1 mm and hence increased the probability of finding the corresponding fringe patterns on the ILIDS image and glare points on the PIV image. In conclusion, it is shown that the proposed combined method can discriminate between droplets and ‘seeding’ particles and is capable of two-phase measurements in polydisperse sprays.  相似文献   

10.
The particle and powder properties produced within spray drying processes are influenced by various unsteady transport phenomena in the dispersed multiphase spray flow in a confined spray chamber. In this context differently scaled spray structures in a confined spray environment have been analyzed in experiments and numerical simulations. The experimental investigations have been carried out with Particle-Image-Velocimetry to determine the velocity of the gas and the discrete phase. Large-Eddy-Simulations have been set up to predict the transient behaviour of the spray process and have given more insight into the sensitivity of the spray flow structures in dependency from the spray chamber design.  相似文献   

11.
This paper compares several linear‐theory‐based models for droplet shattering employed for simulations of spray impingement on flat wall surface or a circular cylinder. Numerical simulations are conducted using a stochastic separated flow (SSF) technique that includes sub‐models for droplet dynamics and impact. Results for spray impingement over a flat wall indicate that the linear theory applicable for a single droplet impact over‐predicts the number of satellite (or secondary) droplets upon shattering when compared to experimental data. The causes for the observed discrepancies are discussed. Numerical simulation results for spray impingement over a circular cylinder in cross flow are obtained and discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
The present paper deals with a new optical diagnostic that aims to perform droplet temperature measurements based on the two-color laser-induced fluorescence (2cLIF). The 2cLIF requires a single tracer, and the fluorescence intensity is collected on two spectral bands. The ratio of both intensities measured in the case of single monodisperse droplets depends in principle only on the temperature. However, the application in the case of polydispere sprays failed. Indeed, a dependence of the droplet size correlated to the depth of field of the optics, used for fluorescence collection, induces a bias in the ratio value. This work analyses these coupled effects by using combined LIF and Phase Doppler Analyser measurements. This device allows achieving fluorescence ratio measurements per droplet size class. The study is conducted with two different sprays in terms of particles size and density. The use of a third spectral band of detection (3cLIF) and a long distance microscope leads to correct the size effect and reduce the depth of field effect, respectively. These investigations are then demonstrated by measuring temperatures in an overheated water spray.  相似文献   

13.
Dispersion of spray droplets and the modulation of turbulence in the ambient gas by the dispersing droplets are two coupled phenomena that are closely linked to the evolution of global spray characteristics, such as the spreading rate of the spray and the spray cone angle. Direct numerical simulations (DNS) of turbulent gas flows laden with sub-Kolmogorov size particles, in the absence of gravity, report that dispersion statistics and turbulent kinetic energy (TKE) evolve on different timescales. Furthermore, each timescale behaves differently with Stokes number, a non-dimensional flow parameter (defined in this context as the ratio of the particle response time to the Kolmogorov timescale of turbulence) that characterizes how quickly a particle responds to turbulent fluctuations in the carrier or gas phase. A new dual-timescale Langevin model (DLM) composed of two coupled Langevin equations for the fluctuating velocities, one for each phase, is proposed. This model possesses a unique feature that the implied TKE and velocity autocorrelation in each phase evolve on different timescales. Consequently, this model has the capability of simultaneously predicting the disparate Stokes number trends in the evolution of dispersion statistics, such as velocity autocorrelations, and TKE in each phase. Predictions of dispersion statistics and TKE from the new model show good agreement with published DNS of non-evaporating and evaporating droplet-laden turbulent flow.  相似文献   

14.
Improved numerical methods and physical models have been applied to droplet collision modeling. Numerically, an adaptive collision mesh method is developed to calculate collision rate. This method produces a collision mesh that is independent of the gas phase mesh and adaptively refined according to local parcel number density. An existing model describing the satellite droplet formation during the collision process is improved to reflect the experimental findings that the satellite droplets are much smaller than the parent droplets. The adaptive collision mesh and the improved satellite model have been used to simulate three impinging spray experiments. The model was able to qualitatively predict the occurrence of small satellite drops and bi-modal post-collision drop size distributions. The effect of the collision mesh and the satellite droplet model on a high-speed non-evaporating diesel spray is also assessed.  相似文献   

15.
 The paper presents a new technique based on laser-induced fluorescence, allowing droplet temperature measurement of evaporating and combusting droplets to be performed. The liquid spray is seeded with a low concentration of rhodamine B. The fluorescence, induced by the green line of an argon laser, is measured on two separated color bands. It is demonstrated that two color bands can be selected for their strong difference in the temperature sensitivity of the fluorescence quantum yield. The determination of the fluorescence ratio between the fluorescence intensity corresponding to each color band allows the tracer concentration and the droplet size dependences to be eliminated. The technique was applied on a monodisperse spray: the effect of a thermal impulse on the distribution of the droplet temperature is studied and, the temperature of combusting droplets is investigated. Received: 16 June 2000/Accepted: 10 November 2000  相似文献   

16.
Primary atomization of liquid injected at high speed into still air is investigated to elucidate physical processes by direct numerical simulation. With sufficient grid resolution, ligament and droplet formation can be captured in a physically sound way. Ligament formation is triggered by the liquid jet tip roll-up, and later ligaments are also produced from the disturbed liquid core surface in the upstream. Ligament production direction is affected by gas vortices. Disturbances are fed from the liquid jet tip toward upstream through vortices and droplet re-collision. When the local gas Weber number is O(1), ligaments are created, thus the ligament or droplet scale becomes smaller as the bulk Weber number increases. Observation of droplet formation from a ligament provides insights into the relevance between the actual droplet formation and pinch-off from a slow liquid jet in laboratory experiments. In the spray, the dominant mode is the short-wave mode driven by propagative capillary wave from the ligament tip. An injection nozzle that is necessary for a slow jet is absent for a ligament, thus the long-wave (Rayleigh) mode is basically not seen without the effect of stretch. By the present simulation, a series of physical processes have been revealed. The present result will be extended to LES modeling in the future.  相似文献   

17.
Flow visualization via micro-PIV has been conducted in order to investigate droplet-merging processes in microchannels. The dispersed-phase droplets seeded with 1-μm fluorescent particles are alternately generated in the cross-channel and merged downstream in a straight channel or in a divergent channel. Since droplet merging occurs within a millisecond, a high-speed camera capable of 6,000 fps is used to capture the images of the droplets and the tracer particles therein by observing through a 40× lens. These images reveal that droplets merge through a sequential process of attachment, drainage, interface coalescence, penetration or envelopment depending on the channel geometry. In the straight channel, where the droplets are confined by the channel walls, the rear droplet penetrates the front droplet at the instant of coalescence. However, when the droplets merge in the divergent channel, a strong vortex motion occurs while the rear droplet envelops the front one.  相似文献   

18.
The dispersion characteristics of a selection of non-evaporating non-reacting, evaporating non-reacting, and reacting dilute spray jets issuing in ambient air (Gounder et al, Combust Sci Technol 182:702–715, 2010; Masri and Gounder, Combust Flame 159:3372–3397, 2010) and in a hot coflow (Oloughlin and Masri, Flow Turbul Combust 89:13–35, 2012) are analysed. Other than the cases found in those contributions, two additional sprays of kerosene have been investigated in order to systematically study the effects of evaporation. The burners are well designed such that boundary conditions may be accurately measured for use in numerical simulations. The dynamics and dispersion characteristics are analysed by conditioning results on the droplet Stokes numbers and by systematically investigating changes in dispersion and dynamics as a function of carrier air velocity, liquid loading, ignition method, and location within the flame or spray jet. The tendency for droplet dispersion defined by the ratio of radial rms velocity to axial mean velocity varies significantly between reacting and non-reacting flows. However, dispersion is found to be largely unaffected by evaporation. The total particle concentration, or number density of droplets within the spray has also been used as a direct measure of spray dispersion with the effect of evaporation on a turbulent polydisperse spray being isolated by investigating acetone and kerosene sprays with similar boundary conditions. The rate of change of droplet size with radial position is almost identical for the kerosene and acetone cases. The dispersion characteristics, closely related to the ‘fan spreading’ phenomenon are dependant on the carrier air velocity and axial location within the spray.  相似文献   

19.
A new moment method for the modelling of polydisperse sprays is proposed that simultaneously takes into account the dispersion in droplet size and droplet velocity. For the derivation of this Eulerian method the kinetic spray equation is used which constitutes a partial differential equation for the probability density function of droplets. To reduce the complex kinetic spray equation to a form that can be managed with the available numerical procedures, moment transforms with respect to the droplet velocity and the droplet size are conducted. The resulting moment equations are closed by choosing an approximate probability density function which applies to polydisperse sprays. The method is successfully tested for configurations in which a polydisperse spray is either splashed, evaporated or effected by a Stokes drag force. The tests are organised in such a way that crossing of two spray distributions is always included. The new method is able to capture the polydisperse nature of sprays as well as the bi-(or multi-) modal character of the droplet velocity distribution function, for example, when droplets cross each other.  相似文献   

20.
Measurements of droplet size in optically-thick, non-evaporating, shear-driven sprays have been made using ultra-small angle x-ray scattering (USAXS). The sprays are produced by orifice-type nozzles coupled to diesel injectors, with measurements conducted from 1 – 24 mm from the orifice, spanning from the optically-dense near-nozzle region to more dilute regions where optical diagnostics are feasible. The influence of nozzle diameter, liquid injection pressure, and ambient density were examined. The USAXS measurements reveal few if any nanoscale droplets, in conflict with a popular computational model of diesel spray breakup. The average droplet diameter rapidly decreases with downstream distance from the nozzle until a plateau value is reached, after which only small changes are seen in droplet diameter. This plateau droplet size is consistent with the droplets being small enough to be stable with respect to further breakup. Liquid injection pressure and nozzle diameter have the biggest impact on droplet size, while ambient density has a smaller effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号