首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Acetic acid exists as dimers in organic solvents like benzene, toluene and xylene. Adsorption of dimeric acetic acid on activated charcoal (AC) at various temperatures from benzene, toluene and xylene solutions have been studied. The system obeys Langmuir isotherm, thus signifying a monolayer adsorption of dimers. Corrections on AC-solvent pore volume fillings, molecular cross sectional surface area of acetic acid dimers, the adsorption equilibrium constants, the free energy change and the enthalpy change values are computed at different temperatures for the three solvents. The adsorption process has been found to be physisorption type. The FTIR measurements show that the adsorbed acetic acid dimer seems to retain the cyclic structure against the open chain non-cyclic structure.  相似文献   

2.
The thermodynamic stability of the acetic acid dimer conformers in microhydrated environments and in aqueous solution was studied by means of molecular dynamics simulations using the density functional based tight binding (DFTB) method. To confirm the reliability of this method for the system studied, density functional theory (DFT) and second order M?ller-Plesset perturbation theory (MP2) calculations were performed for comparison. Classical optimized potentials for liquid simulations (OPLS) force field dynamics was used as well. One focus of this work was laid on the study of the capabilities of water molecules to break the hydrogen bonds of the acetic acid dimer. The barrier for insertion of one water molecule into the most stable cyclic dimer is found to lie between 3.25 and 4.8 kcal mol(-1) for the quantum mechanical methods, but only at 1.2 kcal mol(-1) for OPLS. Starting from different acetic acid dimer structures optimized in gas phase, DFTB dynamics simulations give a different picture of the stability in the microhydrated environment (4 to 12 water molecules) as compared to aqueous solution. In the former case all conformers are converted to the hydrated cyclic dimer, which remains stable over the entire simulation time of 1 ns. These results demonstrate that the considered microhydrated environment is not sufficient to dissociate the acetic acid dimer. In aqueous solution, however, the DFTB dynamics shows dissociation of all dimer structures (or processes leading thereto) starting after about 50 ps, demonstrating the capability of the water environment to break up the relatively strong hydrogen bridges. The OPLS dynamics in the aqueous environment shows--in contrast to the DFTB results--immediate dissociation, but a similar long-term behavior.  相似文献   

3.
Low-frequency spectra of binary room-temperature ionic liquid (RTIL) mixtures of 1-pentyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide and 1-pentyl-3-methylimidazolium bromide in the 0-250 cm(-1) region were studied as a function of mole fraction at 295 K. The spectra were obtained by use of optical heterodyne-detected Raman-induced Kerr effect spectroscopy (OHD-RIKES). The spectra of these binary mixtures are well described by the weighted sums of the spectra for the neat RTILs. This surprising result implies that the intermolecular modes giving rise to the spectra of the neat liquids must also produce the spectra of the mixtures. Additivity of the OKE spectra can be explained by a model in which locally ordered domains are assumed to exist in the neat liquid with the structures of these locally ordered domains preserved upon mixing. Recently published molecular dynamics simulations show that RTILs are nanostructurally organized with ionic networks and nonpolar regions. If ionic networks also exist in the mixture, the additivity of the OKE spectra implies that there are "blocks" along the network of the mixture that are ordered in the same way as in the neat liquids. These "block co-networks" would have a nanostructural organization resembling that of a block copolymer.  相似文献   

4.
The ultrafast dynamics of liquid sulphur dioxide have been studied over a wide temperature range and in solution. The optically heterodyne-detected and spatially masked optical Kerr effect (OKE) has been used to record the anisotropic and isotropic third-order responses, respectively. Analysis of the anisotropic response reveals two components, an ultrafast nonexponential relaxation and a slower exponential relaxation. The slower component is well described by the Stokes-Einstein-Debye equation for diffusive orientational relaxation. The simple form of the temperature dependence and the agreement between collective (OKE) and single molecule (e.g., NMR) measurements of the orientational relaxation time suggests that orientational pair correlation is not significant in this liquid. The relative contributions of intermolecular interaction-induced and single-molecule orientational dynamics to the ultrafast part of the spectral density are discussed. Single-molecule librational-orientational dynamics appear to dominate the ultrafast OKE response of liquid SO2. The temperature-dependent OKE data are transformed to the frequency domain to yield the Raman spectral density for the low-frequency intermolecular modes. These are bimodal with the lowest-frequency component arising from diffusive orientational relaxation and a higher-frequency component connected with the ultrafast time-domain response. This component is characterized by a shift to higher frequency at lower temperature. This result is analyzed in terms of a harmonic librational oscillator model, which describes the data accurately. The observed spectral shifts with temperature are ascribed to increasing intermolecular interactions with increasing liquid density. Overall, the dynamics of liquid SO2 are found to be well described in terms of molecular orientational relaxation which is controlled over every relevant time range by intermolecular interactions.  相似文献   

5.
This article reports a study of the effect of anions on the optical Kerr effect (OKE) spectra of binary ionic liquid mixtures with one mixture comprising the 3-methyl-1-pentylimidazolium ([C 5mim] (+)) cation and the anions PF 6 (-) and CF 3CO 2 (-) (TFA (-)), and another mixture comprising the [C 5mim] (+) cation and the anions Br (-) and bis(trifluomethanesulfonyl)imide (NTf 2 (-)). The spectra were obtained by the use of optical heterodyne-detected Raman-induced Kerr Effect Spectroscopy at 295 K. The OKE spectra of the mixtures are compared with the calculated mole-fraction weighted sum of the normalized OKE spectra of the neat liquids. The OKE spectra are nearly additive for [C 5mim]Br/[C 5mim][NTf 2] mixtures, but nonadditive for [C 5mim][PF 6]/[C 5mim][TFA] mixtures. In the case of the equimolar [C 5mim][PF 6]/[C 5mim][TFA] mixture, the nonadditivity is such that the experimental OKE spectrum is narrower than the calculated OKE spectrum. The additivity or nonadditivity of OKE spectra for IL mixtures can be explained by assuming ionic liquids are nanostructurally organized into nonpolar regions and ionic networks. The ionic networks in mixtures will be characterized by "random co-networks" for anions that are nearly the same in size (PF 6 (-) and TFA (-)) and by "block co-networks" for anions that differ greatly in size (Br (-) and NTf 2 (-)).  相似文献   

6.
The orientational dynamics of thermotropic liquid crystals across the isotropic-nematic phase transition have traditionally been investigated at long times or low frequencies using frequency domain measurements. The situation has now changed significantly with the recent report of a series of interesting transient optical Kerr effect (OKE) experiments that probed orientational relaxation of a number of calamitic liquid crystals (which consist of rod-like molecules) directly in the time domain, over a wide time window ranging from subpicoseconds to tens of microseconds. The most intriguing revelation is that the decay of the OKE signal at short to intermediate times (from a few tens of picoseconds to several hundred nanoseconds) follows multiple temporal power laws. Another remarkable feature that has emerged from these OKE measurements is the similarity in the orientational relaxation behavior between the isotropic phase of calamitic liquid crystals near the isotropic-nematic transition and supercooled molecular liquids, notwithstanding their largely different macroscopic states. In this article, we present an overview of the understanding that has emerged from recent computational and theoretical studies of calamitic liquid crystals across the isotropic-nematic transition. Topics discussed include (a) single-particle as well as collective orientational dynamics at a short-to-intermediate time window, (b) heterogeneous dynamics in orientational degrees of freedom diagnosed by a non-Gaussian parameter, (c) fragility, and (d) temperature-dependent exploration of underlying energy landscapes as calamitic liquid crystals settle into increasingly ordered mesophases upon cooling from the high-temperature isotropic phase. A comparison of our results with those of supercooled molecular liquids reveals an array of analogous features in these two important classes of soft matter systems. We further find that the onset of growth of the orientational order in the parent nematic phase induces translational order, resulting in smectic-like layers in the potential energy minima of calamitic systems if the parent nematic phase is sandwiched between the high-temperature isotropic phase and the low-temperature smectic phase. We discuss implications of this startling observation. We also discuss recent results on the orientational dynamics of discotic liquid crystals that are found to be rather similar to those of calamitic liquid crystals.  相似文献   

7.
8.
We reacted various dimeric, liquid‐crystalline epoxy–imine monomers, differing in the length of the central aliphatic spacer or the dipolar moments, with heptanedioic acid. The resulting systems showed a liquid‐crystalline phase in some cases, depending on the dimer and on the reaction conditions. The systems were characterized with respect to their mesomorphic properties and then were submitted to dynamic mechanical thermal analysis in both fixed‐frequency and frequency‐sweep modes in the shear sandwich configuration. The arrangement in the liquid‐crystalline phase seemed to be mainly affected both by the polarization of the mesogen and by the reaction temperature, which favored the liquid‐crystalline arrangement when it was lying in the range of stability of the dimer mesophase. In agreement with other recent literature data, dynamic mechanical thermal analysis results suggested that the presence of the mesogen directly incorporated into the main chain increased the lifetimes of the elastic modes both in the isotropic phase and in the liquid‐crystalline phase with respect to side‐chain liquid‐crystalline elastomers and that the time–temperature superposition principle did not hold through the liquid‐crystalline‐to‐isotropic transition. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44:6270–6286, 2006  相似文献   

9.
This paper reports measurements of the dielectric response over the frequency range 102 to 109 Hz of a liquid crystal dimer consisting of two ester mesogens laterally linked by an alkoxy chain containing a siloxane group. The synthesis and phase behaviour of the siloxane dimer are also reported. Results show that there are two relaxations in the isotropic phase and four in the nematic phase of the material. The possible molecular origins for these modes are given. It is found that there is a coupling between internal and external modes which gives rise to a cooperative mode as the temperature in the nematic phase is lowered towards a glass transition.  相似文献   

10.
Acetic acid can exist in many possible structural forms depending on its surrounding medium. A recently developed inverse problem methodology (J. Phys. Chem. B 2007, 111, 13064-13074) was utilized in order to elucidate acetic acid structures in a dilute nonpolar medium. In this regard, simultaneous and stopped-flow measurements of the bulk solution densities, refractive indices, relative permittivities, and IR spectra of acetic acid in toluene were performed at several different concentrations in a semibatch closed-loop experimental setup at 298.15 K and 0.1013 MPa. This combined IR spectroscopic and dielectric, density, and refractive index analysis was employed in order to distinguish acetic acid structures and to further determine the dipole moments of the monomer, cyclic dimer, and "lumped-sum" open dimers. The infrared spectra were first analyzed to provide qualitative understanding as well as quantitative estimates for each acetic acid species. Subsequently, the dipole moments of these species were calculated using a direct approach which was primarily based on response surface models. The present method allows the determination of individual dipole moments not only for the monomer but also for the cyclic dimer and the open dimer. The results obtained from this study experimentally show that the cyclic dimer with centrosymmetric structure has a dipole moment approximately 0 D. The results also suggest that the linear dimers are present as mixtures of linear dimers structures. The existence of the linear dimers mixture was also indicated by the experimental infrared analysis of the OH-stretching region (particularly for measurements in n-hexane as solvent) and comparison of these spectra with DFT predictions. Finally, the present methodology which incorporates simultaneous physicochemical and spectroscopic analysis is undoubtedly useful for physicochemical characterization for other nonisolatable solute species and self-associated structures in solution.  相似文献   

11.
Highly coordinate germanium complexes of the N2O2-type tetradentate dipyrrin ligand have been synthesized. X-ray crystallographic analysis revealed the pentacoordinate structure of dimeric germanium complex 2 (=(Ge)2O) and the hexacoordinate structure of monomeric complex 3 (=Ge(OMe)(HOMe)). The dimer 2 was easily hydrolyzed in a solution to give monomer 4, though the corresponding siloxane (Si)2O did not react under the same conditions. The addition of DBU to a solution of 4 gave dimer 5, and neutralization by adding acetic acid regenerated the monomer 4, providing the facile and reversible interconversion between the monomer and dimer. The dipyrrin germanium complexes showed an intense absorption and fluorescence near the NIR region, which is more red-shifted than the silicon complexes.  相似文献   

12.
The ultrafast rotational-diffusive dynamics of the peptide linkage model compounds N-methylacetamide (NMA), acetamide (Ac), and N,N-dimethylacetamide (DMA) have been studied as a function of temperature using optically heterodyne-detected optical Kerr effect (OHD-OKE) spectroscopy. Both NMA and Ac exhibit a non-Arrhenius temperature dependence of the rotational diffusive relaxation time. By contrast, the non-hydrogen-bonding DMA exhibits normal hydrodynamic behavior. The unusual dynamics of NMA and Ac are attributed to the decoupling of single-molecule rotational diffusive relaxation from the shear viscosity via a transition between stick and slip boundary conditions, which arises from local heterogeneity in the liquid due to the formation of hydrogen-bonded chains or clusters. This provides new insight into the structure and dynamics of an important peptide model compound and the first instance of such a phenomenon in a room-temperature liquid. The OHD-OKE responses of carboxylic acids acetic acid (AcOH) and dichloroacetic acid (DCA) are also reported. These, along with the terahertz Raman spectra, show no evidence of the effects observed in amide systems, but display trends consistent with the presence of an equilibrium between the linear and cyclic dimer structures at all temperatures and moderate-to-high mole fractions in aqueous solution. This equilibrium manifests itself as hydrodynamic behavior in the liquid phase.  相似文献   

13.
This paper reports measurements of the dielectric response over the frequency range 102 to 109?Hz of a liquid crystal dimer consisting of two ester mesogens laterally linked by an alkoxy chain containing a siloxane group. The synthesis and phase behaviour of the siloxane dimer are also reported. Results show that there are two relaxations in the isotropic phase and four in the nematic phase of the material. The possible molecular origins for these modes are given. It is found that there is a coupling between internal and external modes which gives rise to a cooperative mode as the temperature in the nematic phase is lowered towards a glass transition.  相似文献   

14.
《Liquid crystals》1997,22(6):693-696
The nematic liquid crystalline property of 4-benzoyloxybenzoic acid (BBA) was observed by polarizing microscopy and X-ray diffraction. The structure of the hydrogen-bonded BBA dimer was verified by FT-IR, and the axial ratio ( l / d ) of the rod-like molecule was calculated to be 5.8, which is large enough to exhibit a liquid crystalline phase. The mesophase was stable at 240 C. At higher temperatures, for example, 270 C, the trans -esterification side reaction occurred. The binary phase diagram of BBA and 4-acetoxybenzoic acid shows the eutectic temperature at 175 C.  相似文献   

15.
We report the synthesis and characterization of dimeric viologen salts (1',1'-(alkane-1,n-diyl)bis(1-ethyl-4,4'-bipyridinium) with n = 4-10) with bis(trifluoromethanesulfonyl)amide (bistriflimide, Tf(2)N(-)) as a counteranion. For n = 4, 5 and 6, and for the nonylviologen cation (1,1'-dinonyl-4,4'-bipyridinium) we also prepared salts with the totally inorganic dodecatungstosilicate anion, SiW(12)O(40)(4-), featuring a poly-charged surface and nanosized dimensions. The materials have been characterized by means of calorimetric techniques, X-ray diffraction and solid state NMR and a comparison is made with analogous monomeric viologen salts exhibiting smectic mesophases. A strong odd-even effect is observed in the melting points and in the thermal behaviour of the bistriflimide dimeric systems, similar to what was reported for dipolar calamitic liquid crystal dimers, although the studied viologen dimers are not mesomorphic. By increasing the size of the counteranion we have observed a destabilization of the crystal phases and of the mesophases in favour of a glassy amorphous state. Implications on the design of novel ionic liquid crystals are discussed. The electrochemical behaviour in solution has been investigated by cyclic voltammetry measurements: interestingly, the odd-even effect is clearly visible also in the redox potentials. The spin-pairing of the viologen radical cations formed at each end of the dimer is responsible for the observed redox trend. Insights on the structure of the spin-paired dimer have been obtained by DFT calculations.  相似文献   

16.
17.
陈玉青  马郑  安芳  郭兴杰 《色谱》2008,26(5):643-645
建立了利阿唑对映体的高效液相色谱拆分方法。采用Chiralpak AD-H手性柱在正相条件下直接拆分利阿唑对映体,考察了流动相中有机极性调节剂的种类和浓度、酸碱的种类和含量、柱温及流速等对利阿唑对映体分离的影响。确定了最佳的拆分条件:流动相为正己烷-乙醇(含0.3%二乙胺和0.1%冰醋酸)(体积比为80∶20),流速0.6 mL/min;检测波长254 nm;柱温20 ℃。在此条件下利阿唑对映体的分离度为3.4。该法简单快速,重现性好。  相似文献   

18.
Seven homologous symmetric dimeric liquid crystals are presented where two three-ring mesogenic units are connected by a bis(carbonyloxy)alkylene spacer. For homologues with terminal heptyloxy, octyloxy and nonyloxy chains, the unusual phase sequence SmA-SmC with increasing temperature was detected by the study of the optical textures and by X-ray diffraction measurements. This unusual behaviour is discussed on the basis of the molecular structure of these compounds.  相似文献   

19.
《Liquid crystals》2000,27(1):43-50
Seven homologous symmetric dimeric liquid crystals are presented where two three-ring mesogenic units are connected by a bis(carbonyloxy)alkylene spacer. For homologues with terminal heptyloxy, octyloxy and nonyloxy chains, the unusual phase sequence SmA-SmC with increasing temperature was detected by the study of the optical textures and by X-ray diffraction measurements. This unusual behaviour is discussed on the basis of the molecular structure of these compounds.  相似文献   

20.
A high yield, one-pot synthesis of the 1,2,3,5-dithiadiazolyl radical NC-(CF2)4-CNSSN radical by reduction of the corresponding 1,3,2,4-dithiadiazolium salt is reported. In the solid state, the title compound is dimerized in trans-cofacial fashion with intra-dimeric Sdelta+...N(delta-) interactions of ca. 3.2 angstroms, and the dimeric units are linked by electrostatic -C triple bond N(delta-)...Sdelta+ interactions forming an infinite chain. Magnetic susceptibility measurements performed on the solid state sample indicate a magnetic moment of 1.8 microB per dimer (1.3 microB per monomer) at 300 K and a good fit to the Bleaney-Bowers model in the temperature range 2-300 K with 2J = -1500 +/- 50 cm(-1), g = 2.02(5), rho = 0.90(3)%, and TIP = 1.25(4) x 10(-3) emu mol(-1). The [NC-(CF2)4-CNSSN radical]2 dimer is the second example of a 1,2,3,5-dithiadiazolyl radical dimer with an experimentally detected triplet excited state as probed by solid-state EPR [2J = -1730 +/- 100 cm(-1), |D| = 0.0278(5) cm(-1), |E| = 0.0047(5) cm(-1)]. The value of the singlet-triplet gap has enabled us to estimate the "in situ" dimerization energy of the radical dimer as ca. -10 kJ mol(-1). The diradical character of the dimer was calculated [CASSCF(6,6)/6-31G*] as 35%. The title radical shows magnetic bistability in the temperature range of 305-335 K as probed by the solid-state EPR presumably arising from the presence of a metastable paramagnetic supercooled phase. Bistability is accompanied by thermochromic behavior with a color change from dark green (dimeric solid) to dark brown (paramagnetic liquid).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号