首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
芯片介电电泳技术是以介电电泳(DEP)分离原理和微机电加工技术为依托发展起来的可用于生化样品分析的新型分析技术.本文概述了芯片介电电泳技术的发展和DEP芯片分析系统的构成,并以DEP操控模式为切入点,介绍了芯片介电电泳在生化样品分析中的应用情况.  相似文献   

2.
阵列式对电极介电电泳芯片及其用于细胞分离富集研究   总被引:2,自引:0,他引:2  
基于介电电泳原理, 设计并制作了一种新型的能够用于细胞分离和富集的微流控介电电泳芯片. 该芯片由沉积有金电极的石英基片和带有微管道的聚二甲基硅氧烷(PDMS)盖片组成. 通过在管道底部布置间距不同的对电极阵列, 增大了正介电电泳力在管道中的有效作用范围, 能够在降低施加电压的同时, 实现对流动体系中细胞样品的捕获. 在3 V和3 MHz条件下, 该DEP芯片对人血红细胞的捕获效率达到83%; 进一步通过将肝癌细胞捕获在芯片电极上可实现对红细胞和肝癌细胞混合样品的分离, 在5 V和400 kHz条件下对肝癌细胞的捕获效率达到86%.  相似文献   

3.
介电电泳芯片及其在细胞分析中的应用   总被引:1,自引:0,他引:1  
简要阐述了在交流和直流电压电场中,介电电泳(DEP)芯片进行细胞分离富集的机理.按照驱动电场的差异对DEP芯片进行了分类,分析和比较了DEP芯片微电极的叉指电极、抛物线电极、堡式电极、三维电极等典型结构.特别对近年来DEP芯片在单细胞分析、细胞分离与富集以及临床细胞分析中的应用进展进行了综述,并对其应用前景和发展方向进行了展望.  相似文献   

4.
吴永杰  徐溢  彭金兰  曹强  曾萍 《分析化学》2011,(10):1589-1594
基于微流控芯片介电电泳( Dielectrophoresis,DEP)原理和技术,在自行设计制作的抛物线电极结构的微流控介电电泳芯片上,采用芯片介电泳临界频率测定法,选择缓冲液电导率为200~1000 μS/cm,激发电压为5V,分别对红细胞(RBC)、白细胞(WBC)和死活HepG2肝癌细胞的临界频率进行了测试,检测...  相似文献   

5.
徐溢  徐平洲  张剑  曹强  温志渝 《化学通报》2007,70(9):655-661
微流控芯片上电驱动在线富集技术是一种有效提高分析效率、检测灵敏度和降低对检测器要求的技术和方法。本文针对目前微流控芯片分析系统中生化样品的预处理问题,对芯片上电驱动在线富集技术进行了分析讨论,介绍了等速电泳、等电聚焦、场放大和介电电泳的样品预富集技术在微流控芯片上的实现与应用,并对每一种技术的原理、特点、存在的问题、近年发展的状况和发展趋势进行了综述。  相似文献   

6.
设计并制作了一种应用于细胞排列的介电泳微流控芯片,以实现细胞的非接触、批量排列。芯片主要包括PDMS微通道和“台阶”形ITO微电极。运用仿真软件COMSOL分析了微电极所形成的电场分布,确定了最大电场强度的位置;利用MEMS加工工艺制备了ITO微电极和PDMS微通道,PDMS微通道与带有ITO电极的载玻片经过氧等离子表面处理后,对准键合获得最终的微流控芯片。通过不同频率下的介电泳实验,实现了酵母菌细胞的介电泳运动,并确定了正、负介电泳运动的电场频率。结果表明,酵母菌细胞在溶液电导率为60μS/cm的环境下,1~10 kHz时,发生负介电泳运动;0.5~10 MHz时,发生正介电泳运动;50 kHz时,没有发生介电泳运动。并在施加8 Vp-p,5 MHz交流电压信号的条件下,实现了酵母菌细胞沿“台阶”形电极边缘直线排列。  相似文献   

7.
基于介电电泳的微流控细胞分离芯片的研究进展   总被引:2,自引:0,他引:2  
细胞分离技术是细胞分选和细胞种群纯化的重要手段,在生物、医学、农业、环境等许多领域都有重要的应用,是当前生化分析领域的国际研究热点。本文介绍了基于介电电泳的微流控细胞分离芯片的研究现状,阐述了介电电泳的工作原理,并依据细胞尺寸、电极形状、外加信号方式等影响细胞介电电泳的关键因素对不同类型的微流控细胞分离芯片进行了详细介绍,并对该技术的未来发展趋势做了展望。  相似文献   

8.
构建了一种薄膜电极阵列结构的细胞电融合芯片, 通过多聚物微通道底/顶层凸齿状的微电极, 以及多聚物微通道侧壁上溅射形成的一层离散式金属薄膜电极, 共同形成离散式"三明治"微电极结构. 该微电极结构可在微通道内部形成与传统凸齿状电极相似的非均匀分布的梯度电场, 通过介电电泳效应进行细胞控制及排队. 利用多聚物在芯片上填充了传统凸齿状电极的凹陷区, 克服了细胞在凹陷区无法有效排队与融合的缺点. 在芯片上利用K562细胞开展了基于介电电泳效应的细胞排队实验及基于可逆性电穿孔效应的电融合实验, 结果表明该芯片能够较好地实现细胞排队及融合, 融合所需控制电压低至10 V左右. 细胞排队率达99%以上, 几乎无细胞在绝缘物填充区(传统凸齿电极芯片的凹陷区)滞留, 细胞两两排队高于60%, 细胞融合效率约为40%, 比传统的细胞电融合方法和凸齿电极芯片有较大提高.  相似文献   

9.
基于SOI基底的高通量细胞电融合芯片   总被引:5,自引:0,他引:5  
提出了一种以MEMS技术为基础, 可在低电压驱动条件下工作的创新型细胞电融合芯片. 该芯片的设计原理在于通过缩短微电极间的间距, 在低电压条件下获得足够强度的排队和融合电场强度. 原型芯片以SOI硅片为加工材料, 通过刻蚀方式在顶层低阻硅形成微电极和微通道; 在微电极上沉淀2 μm厚的铝膜以降低电阻率, 提高导电性; 通过PECVD方法形成150 nm厚SiO2保障铝膜的抗腐蚀性及芯片生物相容性; 芯片最终采用DIP法进行封装. 在该芯片上进行了低电压(传统电融合设备工作电压的1/20)驱动条件下的基于介电电泳的细胞排队实验及后期的细胞电融合实验, 结果表明, 细胞多以两两结合的方式排列, 与传统的细胞融合电仪器相比较, 降低了多细胞排队概率, 进而减少了传统电融合设备多细胞融合的概率, 为细胞高效率融合奠定了基础. 在加载的低电压短脉冲信号后, 微通道中形成了高压短脉冲电场, 在脉冲作用下, 烟草原生质体细胞在微通道中发生了融合, 融合时间(2 min)远低于传统电融合方法(10~30 min), 融合率远远高于传统的PEG方法(融合率小于1%)和传统电融合方法(利用BTX ECM 2001细胞电融合系统得到, 融合率小于5%).  相似文献   

10.
微流控芯片系统在单细胞研究中的应用   总被引:2,自引:0,他引:2  
高健  殷学锋  方肇伦 《化学进展》2004,16(6):975-983
微流控芯片具有网络式通道结构,扩展了在细胞和亚细胞水平进行生命科学研究的能力,为单细胞研究提供了一个新的平台.在微流控芯片通道中,人们利用气压、液压和电压,或利用介电电泳、光学陷阱、行波介电电泳以及磁场等技术,可以操纵细胞通过或驻留在通道内的任意位置,从而使单细胞计数、筛选以及胞内组分分析等操作大大简化.本文对微流控芯片系统在血液流变学、单细胞操纵与计数以及单细胞胞内组分分析中的应用进行了综述,介绍了用于单细胞研究的多种微芯片系统,讨论了芯片上进行单细胞操纵的各种方法  相似文献   

11.
Dielectrophoresis (DEP) and flow cytometry are powerful technologies and widely applied in microfluidic systems for handling and measuring cells and particles. Here, we present a novel microchip with a DEP selective filter integrated with two microchip flow cytometers (FCs) for on-line monitoring of cell sorting processes. On the microchip, the DEP filter is integrated in a microfluidic channel network to sort yeast cells by positive DEP. The two FCs detection windows are set upstream and downstream of the DEP filter. When a cell passes through the detection windows, the light scattered by the cell is measured by integrated polymer optical elements (waveguide, lens, and fiber coupler). By comparing the cell counting rates measured by the two FCs, the collection efficiency of the DEP filter can be determined. The chips were used for quantitative determination of the effect of flow rate, applied voltage, conductivity of the sample, and frequency of the electric field on the sorting efficiency. A theoretical model for the capture efficiency was developed and a reasonable agreement with the experimental results observed. Viable and non-viable yeast cells showed different frequency dependencies and were sorted with high efficiency. At 2 MHz, more than 90% of the viable and less than 10% of the non-viable cells were captured on the DEP filter. The presented approach provides quantitative real-time data for sorting a large number of cells and will allow optimization of the conditions for, e.g., collecting cancer cells on a DEP filter while normal cells pass through the system. Furthermore, the microstructure is simple to fabricate and can easily be integrated with other microstructures for lab-on-a-chip applications.  相似文献   

12.
《Analytical letters》2012,45(2-3):187-201
This paper reviews the functions of dielectrophoresis (DEP) that have been applied to biosensor and biochip platforms for bacteria detection, including concentration of bacterial cells from continuous flows, separation of target bacterial cells from non-target cells, as well as the enhancement of antibody capture efficiency on biosensor and biochip surfaces. DEP could provide effective concentration and separation simultaneously in well-designed microfluidic biosensor and biochip systems. The integration of DEP with a detection system allows the integration of sample preparation and enrichment steps with detection, which has the potential to eliminate the traditionally used time-consuming culture-based enrichment steps and other multiple off-chip sample preparation steps. DEP is also useful in biosensor and biochips platforms for enhancing antibody capture efficiency in both flow-through and non-flow-through microdevices. The enhanced antibody capture efficiency could allow the sensor capture more cells and to be detected by the sensor, particularly in dealing with low number of cells. The integration of multifunctions of DEP into biosensor and biochip platform has the potential to improve the detection of bacterial cells.  相似文献   

13.
Liju Yang 《Talanta》2009,80(2):551-7212
This study integrated dielectrophoresis (DEP) with non-flow through biochips to enhance the immuno-capture and detection of foodborne pathogenic bacteria. It demonstrated two major functions provided by DEP to improve the chip performance: (i) concentrating bacterial cells from the suspension to different locations on the chip surface by positive and negative DEP; (ii) making the cells in close contact with the immobilized antibodies on the chip surface so that immuno-capture efficiency can be dramatically enhanced.The microchip achieved the immuno-capture efficiencies of ∼56.0% and ∼64.0% to Salmonella cells with 15 and 30 min DEP, respectively, which were considerably higher than those of ∼10.4% and ∼17.6% for 15 and 30 min immuno-capture without DEP. The immuno-captured bacterial cells were detected by the sandwich format ELISA on the chips. The final absorbance signals were enhanced by DEP assisted immuno-capture by 64.7-105.2% for the samples containing 103-106 cells/20 μl. The integration of DEP with the biochips has the potential to advance the chip-based immunoassay methods for microbial detection.  相似文献   

14.
Dielectrophoresis in microfluidics technology   总被引:1,自引:0,他引:1  
Cetin B  Li D 《Electrophoresis》2011,32(18):2410-2427
Dielectrophoresis (DEP) is the movement of a particle in a non-uniform electric field due to the interaction of the particle's dipole and spatial gradient of the electric field. DEP is a subtle solution to manipulate particles and cells at microscale due to its favorable scaling for the reduced size of the system. DEP has been utilized for many applications in microfluidic systems. In this review, a detailed analysis of the modeling of DEP-based manipulation of the particles is provided, and the recent applications regarding the particle manipulation in microfluidic systems (mainly the published works between 2007 and 2010) are presented.  相似文献   

15.
Dielectrophoresis for the manipulation of nanobioparticles   总被引:1,自引:0,他引:1  
Dielectrophoresis (DEP) is a nondestructive electrokinetic mechanism with great potential for the manipulation of bioparticles. DEP is the movement of particles induced by polarization effects in nonuniform electric fields. Since the 1960s, this technique has been successfully used for the manipulation of microbioparticles, such as microorganisms. Moreover, due to the advances in microfabrication techniques, that allowed progressively smaller microstructures to be constructed, DEP can now be used for the manipulation of nanobioparticles. The first research studies on the DEP of nanobioparticles started in the 1990s. Since then, many research groups have carried out outstanding work with DEP of nanobioparticles such as macromolecules, virus, and spores. However, the need of a critical report that integrates these findings is evident. The aim of the present review is to depict the state-of-the-art on the use of DEP for the separation of nanobioparticles and the potential trends of novel applications of this technique. This review compiles and analyzes the significant findings obtained by many researchers. This publication is intended to provide the reader with state-of-the-art information on many research studies focused on DEP to handle nanobioparticles.  相似文献   

16.
The 20th century has seen tremendous innovation of dielectrophoresis (DEP) technologies, with applications being developed in areas ranging from industrial processing to micro- and nanoscale biotechnology. From 2010 to present day, there have been 981 publications about DEP. Of over 2600 DEP patents held by the United States Patent and Trademark Office, 106 were filed in 2019 alone. This review focuses on DEP-based technologies and application developments between 2010 and 2020, with an aim to highlight the progress and to identify potential areas for future research. A major trend over the last 10 years has been the use of DEP techniques for biological and clinical applications. It has been used in various forms on a diverse array of biologically derived molecules and particles to manipulate and study them including proteins, exosomes, bacteria, yeast, stem cells, cancer cells, and blood cells. DEP has also been used to manipulate nano- and micron-sized particles in order to fabricate different structures. The next 10 years are likely to see the increase in DEP-related patent applications begin to result in a greater level of technology commercialization. Also during this time, innovations in DEP technology will likely be leveraged to continue the existing trend to further biological and medical-focused applications as well as applications in microfabrication. As a tool leveraged by engineering and imaginative scientific design, DEP offers unique capabilities to manipulate small particles in precise ways that can help solve problems and enable scientific inquiry that cannot be addressed using conventional methods.  相似文献   

17.
We demonstrate for the first time the dielectrophoretic trapping and manipulation of a whole animal, the nematode Caenorhabditis elegans. We studied the effect of the electric field on the nematode as a function of field intensity and frequency. We identified a range of electric field intensities and frequencies that trap worms without apparent adverse effect on their viability. Worms tethered by dielectrophoresis (DEP) exhibit behavioral responses to blue light, indicating that at least some of the nervous system functions are unimpaired by the electrical field. DEP is useful to dynamically tether nematodes, sort nematodes according to size, and separate dead worms from live ones.  相似文献   

18.
Kadaksham J  Singh P  Aubry N 《Electrophoresis》2005,26(19):3738-3744
We experimentally study the transient clustering behavior of viable yeast cells in a dilute suspension suddenly subjected to a nonuniform alternating current (AC) electric field of a microelectrode device. The frequency of the applied electric field is varied to identify two distinct regimes of positive dielectrophoresis. In both regimes, the yeast cells eventually cluster at electrodes' edges, but their transient behavior as well as their final arrangement is quite different. Specifically, when the frequency is much smaller than the cross-over frequency, the nearby yeast cells quickly rearrange in well-defined chains which then move toward the electrodes' edges and remain aligned as elongated chains at their final location. However, when the frequency is close to the cross-over frequency, cells move individually toward the regions of collection and simply agglomerate along the electrodes' edges. Our analysis shows that in the first regime both the dielectrophoretic (DEP) force and the mutual DEP force, which arises due to the electrostatic particle-particle interactions, are important. In the second regime, on the other hand, the DEP force dominates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号