首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intra- and extradiol subfamilies of catechol-adduct ring-cleaving dioxygenases each exhibit nearly absolute fidelity for the ring cleavage position. This is often attributed to the fact that the oxygen activation mechanism of intradiol dioxygenases utilizes Fe3+ while that of the extradiol enzymes employs Fe2+, but the subfamilies also differ in primary sequence, structural fold, iron ligands, and second sphere active site amino acid residues. Here, we examine the effects of the second sphere residue H200 in the active site of homoprotocatechuate 2,3-dioxygenase (2,3-HPCD), an extradiol-cleaving enzyme. It is shown that the H200F mutant enzyme catalyzes extradiol cleavage of the normal substrate, homoprotocatechuate (HPCA), but intradiol cleavage of the alternative substrate 2,3-dihydroxybenzoate (2,3-DHB) while in the Fe2+ oxidation state. Wild-type 2,3-HPCD catalyzes extradiol cleavage of both substrates. This is the first report of intradiol cleavage by an extradiol dioxygenase. It suggests that intradiol cleavage can occur with the iron in the Fe2+ state, with the iron ligand set characteristic of extradiol dioxygenases, and through a mechanism in which oxygen is activated by binding to the iron rather than directly attacking the substrate as in true intradiol dioxygenases. This indicates that substrate binding geometry and acid/base chemistry of second sphere residues play important roles in determining the course of the dioxygenase reaction.  相似文献   

2.
(4-Hydroxyphenyl)pyruvate dioxygenase (HPPD) is an unusual alpha-keto acid-dependent non-heme iron dioxygenase as it incorporates both atoms of dioxygen into a single substrate, paralleling the extradiol dioxygenases. CD/MCD studies of the catalytically active ferrous site and its interaction with substrate reveal a geometic and electronic structure and mechanistic approach to oxygen activation which bridges those of the alpha-KG-dependent and the extradiol dioxygenases.  相似文献   

3.
The catalytic mechanism of the non-heme iron extradiol dioxygenases has been studied using hybrid density functional theory. These enzymes cleave a C-C bond outside the two hydroxyl groups of catechols, in contrast to the intradiol enzymes which cleave the C-C bond between these two groups. The chemical models used comprise about 70 atoms and include the first-shell ligands, two histidines, one glutamate, and one water, as well as some second-shell ligands, two histidines, one aspartate, and one tyrosine. Catechol is found to bind as a monoanion in agreement with experiments, while dioxygen is found to replace the water ligand. A spin-transition from the initial septet to a quintet state prepares the system for formation of a bridging peroxide with the catechol substrate. When the O-O bond is cleaved in the suggested rate-limiting step, a key substrate intermediate with partly radical and partly anionic character is formed. The partly anionic character is found to determine the selectivity of the enzyme. The results are compared to available experimental information and to previous studies.  相似文献   

4.
Mononuclear iron(II)- and iron(III)-catecholato complexes with three members of a new 3,3-bis(1-alkylimidazol-2-yl)propionate ligand family have been synthesized as models of the active sites of the extradiol cleaving catechol dioxygenases. These enzymes are part of the superfamily of dioxygen-activating mononuclear non-heme iron enzymes that feature the so-called 2-His-1-carboxylate facial triad. The tridentate, tripodal, and monoanionic ligands used in this study include the biologically relevant carboxylate and imidazole donor groups. The structure of the mononuclear iron(III)-tetrachlorocatecholato complex [Fe(L3)(tcc)(H2O)] was determined by single-crystal X-ray diffraction, which shows a facial N,N,O capping mode of the ligand. For the first time, a mononuclear iron complex has been synthesized, which is facially capped by a ligand offering a tridentate Nim,Nim,Ocarb donor set, identical to the endogenous ligands of the 2-His-1-carboxylate facial triad. The iron complexes are five-coordinate in noncoordinating media, and the vacant coordination site is accessible for Lewis bases, e.g., pyridine, or small molecules such as dioxygen. The iron(II)-catecholato complexes react with dioxygen in two steps. In the first reaction the iron(II)-catecholato complexes rapidly convert to the corresponding iron(III) complexes, which then, in a second slow reaction, exhibit both oxidative cleavage and auto-oxidation of the substrate. Extradiol and intradiol cleavage are observed in noncoordinating solvents. The addition of a proton donor results in an increase in extradiol cleavage. The complexes add a new example to the small group of synthetic iron complexes capable of eliciting extradiol-type cleavage and provide more insight into the factors determining the regioselectivity of the enzymes.  相似文献   

5.
Iron(II) complexes of a series of N-acylated dipyridin-2-ylmethylamine ligands (R-DPAH) have been investigated as catalysts for the cis-dihydroxylation of olefins to model the action of Rieske dioxygenases that catalyze arene cis-dihydroxylation. The Rieske dioxygenases have a mononuclear iron active site coordinated to a 2-histidine-1-carboxylate facial triad motif. The R-DPAH ligands are designed to provide a facial N,N,O-ligand set that mimics the enzyme active site. The iron(II) complexes of the R-DPAH ligands activate H(2)O(2) to effect the oxidation of olefin substrates into cis-diol products. As much as 90% of the H(2)O(2) oxidant is converted into cis-diol, but a large excess of olefin is required to achieve the high conversion efficiency. Reactivity and mechanistic comparisons with the previously characterized Fe(TPA)/H(2)O(2) catalyst/oxidant combination (TPA = tris(pyridin-2-ylmethyl)amine) lead us to postulate an Fe(II)/Fe(IV) redox cycle for the Fe(R-DPAH) catalysts in which an Fe(IV)(OH)(2) oxidant carries out the cis-hydroxylation of olefins. This hypothesis is supported by three sets of observations: (a) the absence of a lag phase in the conversion of the H(2)O(2) oxidant into a cis-diol product, thereby excluding the prior oxidation of the Fe(II) catalyst to an Fe(III) derivative as established for the Fe(TPA) catalyst; (b) the incorporation of H(2)(18)O into the cis-diol product, thereby requiring O-O bond cleavage to occur prior to cis-diol formation; and (c) the formation of cis-diol as the major product of cyclohexene oxidation, rather than the epoxide or allylic alcohol products more commonly observed in metal-catalyzed oxidations of cyclohexene, implicating an oxidant less prone to oxo transfer or H-atom abstraction.  相似文献   

6.
High-valent iron-oxo species have frequently been invoked in the oxidation of hydrocarbons by both heme and non-heme enzymes. Although a formally Fe(V)=O species, that is, [(Por(*))Fe(IV)=O](+), has been widely accepted as the key oxidant in stereospecific alkane hydroxylation by heme systems, it is not established that such a high-valent state can be accessed by a non-heme ligand environment. Herein we report a systematic study on alkane oxidations with H(2)O(2) catalyzed by a group of non-heme iron complexes, that is, [Fe(II)(TPA)(CH(3)CN)(2)](2+) (1, TPA = tris(2-pyridylmethyl)amine) and its alpha- and beta-substituted analogues. The reactivity patterns of this family of Fe(II)(TPA) catalysts can be modulated by the electronic and steric properties of the ligand environment, which affects the spin states of a common Fe(III)-OOH intermediate. Such an Fe(III)-peroxo species is high-spin when the TPA ligand has two or three alpha-substituents and is proposed to be directly responsible for the selective C-H bond cleavage of the alkane substrate. The thus-generated alkyl radicals, however, have relatively long lifetimes and are susceptible to radical epimerization and trapping by O(2). On the other hand, 1 and the beta-substituted Fe(II)(TPA) complexes catalyze stereospecific alkane hydroxylation by a mechanism involving both a low-spin Fe(III)-OOH intermediate and an Fe(V)=O species derived from O-O bond heterolysis. We propose that the heterolysis pathway is promoted by two factors: (a) the low-spin iron(III) center which weakens the O-O bond and (b) the binding of an adjacent water ligand that can hydrogen bond to the terminal oxygen of the hydroperoxo group and facilitate the departure of the hydroxide. Evidence for the Fe(V)=O species comes from isotope-labeling studies showing incorporation of (18)O from H(2)(18)O into the alcohol products. (18)O-incorporation occurs by H(2)(18)O binding to the low-spin Fe(III)-OOH intermediate, its conversion to a cis-H(18)O-Fe(V)=O species, and then oxo-hydroxo tautomerization. The relative contributions of the two pathways of this dual-oxidant mechanism are affected by both the electron donating ability of the TPA ligand and the strength of the C-H bond to be broken. These studies thus serve as a synthetic precedent for an Fe(V)=O species in the oxygen activation mechanisms postulated for non-heme iron enzymes such as methane monooxygenase and Rieske dioxygenases.  相似文献   

7.
Three mechanistic probes were used to investigate whether the Criegee rearrangement step of catechol 1,2-dioxygenase (CatA) from Acinetobacter sp. proceeds via a direct 1,2-acyl migration, via homolytic O-O cleavage, or via a benzene oxide-oxepin rearrangement. Incubation of CatA with 3-chloroperoxybenzoic acid led to the formation of a 9:1 mixture of 2-chlorophenol and 3-chlorophenol, via a mechanism involving O-O homolytic cleavage. Incubation of CatA with 2-hydroperoxy-2-methylcyclohexanone led to formation of 5,6-diketoheptan-1-ol, also consistent with an O-O homolytic cleavage mechanism, and not consistent with a direct 1,2-acyl migration. No reaction product was isolated from incubation of CatA with 6-hydroxymethyl-6-methylcyclohexa-2,4-dienone, an analogue that is able to undergo the benzene oxide-oxepin rearrangement, but not able to undergo O-O homolytic cleavage. In contrast, incubation of extradiol dioxygenase MhpB from Escherichia coli with 6-hydroxymethyl-6-methylcyclohexa-2,4-dienone led to the formation of a 2-tropolone ring expansion product, consistent with a direct 1,2-alkenyl migration for extradiol cleavage. Taken together, the results imply different mechanisms for the Criegee rearrangement steps of intradiol and extradiol catechol dioxygenases: a direct 1,2-alkenyl migration for extradiol cleavage and an O-O homolytic cleavage mechanism for intradiol cleavage.  相似文献   

8.
Density functional calculations using the B3LYP functional have been used to study the reaction mechanism of [Fe(Tp(Ph2))BF] (Tp(Ph2) = hydrotris(3,5-diphenylpyrazol-1-yl)borate; BF = benzoylformate) with dioxygen. This mononuclear non-heme iron(II) complex was recently synthesized, and it proved to be the first biomimetic complex reproducing the dioxygenase activity of alpha-ketoglutarate-dependent enzymes. Moreover, the enthalpy and entropy of activation for this biologically interesting process were derived from kinetic experiments offering a unique possibility for direct comparison of theoretical and experimental data. The results reported here support a mechanism in which oxidative decarboxylation of the keto acid is the rate-limiting step. This oxygen activation process proceeds on the septet potential energy surface through a transition state for a concerted O-O and C-C bond cleavage. In the next step, a high-valent iron-oxo species performs electrophilic attack on the phenyl ring of the Tp(Ph2) ligand leading to an iron(III)-radical sigma-complex. Subsequent proton-coupled electron-transfer yields an iron(II)-phenol intermediate, which can bind dioxygen and reduce it to a superoxide radical. Finally, the protonated superoxide radical leaves the first coordination sphere of the iron(III)-phenolate complex and dismutates to dioxygen and hydrogen peroxide. The calculated activation barrier (enthalpy and entropy) and the overall reaction energy profile agree well with experimental data. A comparison to the enzymatic process, which is suggested to occur on the quintet surface, has been made.  相似文献   

9.
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are heme-containing dioxygenases and catalyze oxidative cleavage of the pyrrole ring of L-tryptophan. On the basis of three recent crystal structures of these heme-containing dioxygenases, two new mechanistic pathways were proposed by several groups. Both pathways start with electrophilic addition of the Fe(II)-bound dioxygen concerted with proton transfer (oxygen ene-type reaction), followed by either formation of a dioxetane intermediate or Criegee-type rearrangement. However, density functional theory (DFT) calculations do not support the proposed concerted oxygen ene-type and Criegee-type rearrangement pathways. On the basis of DFT calculations, we propose a new mechanism for dioxygen activation in these heme systems. The mechanism involves (a) direct electrophilic addition of the Fe(II)-bound oxygen to the C2 or C3 position of the indole in a closed-shell singlet state or (b) direct radical addition of the Fe(III)-superoxide to the C2 position of the indole in a triplet (or open-shell singlet) state. Then, a radical-recombination or nearly barrierless charge-recombination step from the resultant diradical or zwitterionic intermediates, respectively, proceeds to afford metastable dioxetane intermediates, followed by ring-opening of the dioxetanes. Alternatively, homolytic O-O bond cleavage from the diradical intermediate followed by oxo attack and facile C2-C3 bond cleavage could compete with the dioxetane formation pathway. Effects of ionization of the imidazole and negatively charged oxyporphyrin complex on the key dioxygen activation process are also studied.  相似文献   

10.
The mechanism of the catalytic reaction of protocatechuate 3,4-dioxygenase (3,4-PCD), a representative intradiol dioxygenase, was studied with the hybrid density functional method B3LYP. First, a smaller model involving only the iron first-shell ligands (His460, His462, and Tyr408) and the substrates (catechol and dioxygen) was used to probe various a priori plausible reaction mechanisms. Then, an extended model involving also the most important second-shell groups (Arg457, Gln477, and Tyr479) was used for the refinement of the preselected mechanisms. The computational results suggest that the chemical reactions constituting the catalytic cycle of intradiol dioxygenases involve: (1) binding of the substrate as a dianion, in agreement with experimental suggestions, (2) binding of dioxygen to the metal aided by an electron transfer from the substrate to O(2), (3) formation of a bridging peroxo intermediate and its conformational change, which opens the coordination site trans to His462, (4) binding of a neutral XOH ligand (H(2)O or Tyr447) at the open site, (5) proton transfer from XOH to the neighboring peroxo ligand yielding the hydroperoxo intermediate, (6) a Criegee rearrangement leading to the anhydride intermediate, and (7) hydrolysis of the anhydride to the final acyclic product. One of the most important results obtained is that the Criegee mechanism requires an in-plane orientation of the four atoms (two oxygen and two carbon atoms) mainly involved in the reaction. This orientation yields a good overlap between the two sigma orbitals involved, C-C sigma and O-O sigma, allowing an efficient electron flow between them. Another interesting result is that under some conditions, a homolytic O-O bond cleavage might compete with the Criegee rearrangement. The role of the second-shell residues and the substituent effects are also discussed.  相似文献   

11.
The reaction catalyzed by the plant enzyme 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO) was investigated by using hybrid density functional theory. ACCO belongs to the non-heme iron(II) enzyme superfamily and carries out the bicarbonate-dependent two-electron oxidation of its substrate ACC (1-aminocyclopropane-1-carboxylic acid) concomitant with the reduction of dioxygen and oxidation of a reducing agent probably ascorbate. The reaction gives ethylene, CO(2), cyanide and two water molecules. A model including the mononuclear iron complex with ACC in the first coordination sphere was used to study the details of O-O bond cleavage and cyclopropane ring opening. Calculations imply that this unusual and complex reaction is triggered by a hydrogen atom abstraction step generating a radical on the amino nitrogen of ACC. Subsequently, cyclopropane ring opening followed by O-O bond heterolysis leads to a very reactive iron(IV)-oxo intermediate, which decomposes to ethylene and cyanoformate with very low energy barriers. The reaction is assisted by bicarbonate located in the second coordination sphere of the metal.  相似文献   

12.
The major oxygenation product of catechol by dioxygen in the presence of FeCl(2) or FeCl(3), 1,4,7-triazacyclononane (TACN), and pyridine in methanol is the extradiol cleavage product 2-hydroxymuconic semi-aldehyde methyl ester (Lin, G.; Reid, G.; Bugg, T. D. H. J. Chem. Soc. Chem. Commun. 2000, 1119--1120). Under these conditions, extradiol cleavage of a range of 3- and 4-substituted catechols with electron-donating substituents is observed. The reaction shows a preference in selectivity and rate for iron(II) rather than iron(III) for the extradiol cleavage, which parallels the selectivity of the extradiol dioxygenase family. The reaction also shows a high selectivity for the macrocyclic ligand, TACN, over a range of other nitrogen- and oxygen-containing macrocycles. Reaction of anaerobically prepared iron-TACN complexes with dioxygen gave the same product as monitored by UV/vis spectroscopy. KO(2) is able to oxidize catechols with both electron-donating and electron-withdrawing substituents, implying a different mechanism for extradiol cleavage. Saturation kinetics were observed for catechols, which fit the Michaelis--Menten equation to give k(cat)(app) = 4.8 x 10(-3) s(-1) for 3-(2',3'-dihydroxyphenyl)propionic acid. The reaction was also found to proceed using monosodium catecholate in the absence of pyridine, but with different product ratios, giving insight into the acid/base chemistry of extradiol cleavage. In particular, extradiol cleavage in the presence of iron(II) shows a requirement for a proton donor, implying a role for an acidic group in the extradiol dioxygenase active site.  相似文献   

13.
Density functional theory using the B3LYP hybrid functional has been employed to investigate the reactivity of Fe(TPA) complexes (TPA = tris(2-pyridylmethyl)amine), which are known to catalyze stereospecific hydrocarbon oxidation when H(2)O(2) is used as oxidant. The reaction pathway leading to O-O bond heterolysis in the active catalytic species Fe(III)(TPA)-OOH has been explored, and it is shown that a high-valent iron-oxo intermediate is formed, where an Fe(V) oxidation state is attained, in agreement with previous suggestions based on experiments. In contrast to the analogous intermediate [(Por.)Fe(IV)=O](+1) in P450, the TPA ligand is not oxidized, and the electrons are extracted almost exclusively from the mononuclear iron center. The corresponding homolytic O-O bond cleavage, yielding the two oxidants Fe(IV)=O and the OH. radical, has also been considered, and it is shown that this pathway is inaccessible in the hydrocarbon oxidation reaction with Fe(TPA) and hydrogen peroxide. Investigations have also been performed for the O-O cleavage in the Fe(III)(TPA)-alkylperoxide species. In this case, the barrier for O-O homolysis is found to be slightly lower, leading to loss of stereospecificity and supporting the experimental conclusion that this is the preferred pathway for alkylperoxide oxidants. The difference between hydroperoxide and alkylperoxide as oxidant derives from the higher O-O bond strength for hydrogen peroxide (by 8.0 kcal/mol).  相似文献   

14.
We have generated a high-spin Fe(III)-OOH complex supported by tetramethylcyclam via protonation of its conjugate base and characterized it in detail using various spectroscopic methods. This Fe(III)-OOH species can be converted quantitatively to an Fe(IV)═O complex via O-O bond cleavage; this is the first example of such a conversion. This conversion is promoted by two factors: the strong Fe(III)-OOH bond, which inhibits Fe-O bond lysis, and the addition of protons, which facilitates O-O bond cleavage. This example provides a synthetic precedent for how O-O bond cleavage of high-spin Fe(III)-peroxo intermediates of non-heme iron enzymes may be promoted.  相似文献   

15.
Nature has evolved enzymes that carry out the cis-dihydroxylation of C=C bonds in the biodegradation of arenes in the environment. These enzymes, called Rieske dioxygenases, have mononuclear iron centers coordinated to a 2-His-1-carboxylate facial triad motif that has emerged as a common structural element among many nonheme iron enzymes. In contrast, olefin cis-dihydroxylation is conveniently carried out by OsO4 and related species in synthetic procedures. To develop more environmentally benign strategies for carrying out these transformations, we have designed Ph-DPAH [(di-(2-pyridyl)methyl)benzamide], a tridentate ligand that mimics the facial N,N,O site of the mononuclear iron center in the Rieske dioxygenases. Its iron(II) complex has been found to catalyze olefin cis-dihydroxylation almost exclusively and with high H2O2 conversion efficiency on a wide range of substrates. and 18O labeling experiments suggest the participation of an FeV oxidant.  相似文献   

16.
Density functional theory (B3LYP) has been applied to large models of the Fe(II)-Cu(I) binuclear center in cytochrome oxidase, investigating the mechanism of O-O bond cleavage in the mixed valence form of the enzyme. To comply with experimental information, the O(2) molecule is assumed to be bridging between iron and copper during the O-O bond cleavage, leading to the formation of a ferryl-oxo group and a cupric hydroxide. In accord with previous suggestions, the calculations show that it is energetically feasible to take the fourth electron needed in this reaction from the tyrosine residue that is cross-linked to one of the copper ligands, resulting in the formation of a neutral tyrosyl radical. However, the calculations indicate that simultaneous transfer of an electron and a proton from the tyrosine to dioxygen during bond cleavage leads to a barrier more than 10 kcal/mol higher than that experimentally determined. This may be overcome in two ways. If an extra proton in the binuclear center assists in the mechanism, the calculated reaction barrier agrees with experiment. Alternatively, the fourth electron might initially be supplied by a residue in the vicinity other than the tyrosine.  相似文献   

17.
Copper active sites play a major role in biological and abiological dioxygen activation. Oxygen intermediates have been studied in detail for the proteins and enzymes involved in reversible O(2) binding (hemocyanin), activation (tyrosinase), and four-electron reduction to water (multicopper oxidases). These oxygen intermediates exhibit unique spectroscopic features indicative of new geometric and electronic structures involved in oxygen activation. The spectroscopic and quantum-mechanical study of these intermediates has defined geometric- and electronic-structure/function correlations, and developed detailed reaction coordinates for the reversible binding of O(2), hydroxylation, and H-atom abstraction from different substrates, and the reductive cleavage of the O-O bond in the formation water.  相似文献   

18.
In the catalytic cycle of cytochrome P450cam, after molecular oxygen binds as a ligand to the heme iron atom to yield a ferrous dioxygen complex, there are fast proton transfers that lead to the formation of the active species, Compound I (Cpd I), which are not well understood because they occur so rapidly. In the present work, the conversion of the ferric hydroperoxo complex (Cpd 0) to Cpd I has been investigated by combined quantum-mechanical/molecular-mechanical (QM/MM) calculations. The residues Asp(251) and Glu(366) are considered as proton sources. In mechanism I, a proton is transported to the distal oxygen atom of the hydroperoxo group via a hydrogen bonding network to form protonated Cpd 0 (prot-Cpd0: FeOOH(2)), followed by heterolytic O-O bond cleavage that generates Cpd I and water. Although a local minimum is found for prot-Cpd0 in the Glu(366) channel, it is very high in energy (more than 20 kcal/mol above Cpd 0) and the barriers for its decay are only 3-4 kcal/mol (both toward Cpd 0 and Cpd I). In mechanism II, an initial O-O bond cleavage followed by a concomitant proton and electron transfer yields Cpd I and water. The rate-limiting step in mechanism II is O-O cleavage with a barrier of about 13-14 kcal/mol. According to the QM/MM calculations, the favored low-energy pathway to Cpd I is provided by mechanism II in the Asp(251) channel. Cpd 0 and Cpd I are of similar energies, with a slight preference for Cpd I.  相似文献   

19.
We have studied oxidation reactions using a synthetic heme-thiolate (SR complex) in order to ascertain the contributions of multiple intermediates derived from heme-thiolate to the oxygen atom transfer reaction to substrate. First, degradation of peroxyphenylacetic acid (PPAA) was examined in the presence of various substrates. The O-O bond cleavage mode of PPAA was clearly dependent on the reactivity of the substrate, and an easily oxidizable substrate enhanced heterolytic O-O bond cleavage. Second, competitive oxidations of cyclooctane and cyclooctene were carried out with various peroxybenzoic acids containing a series of substituents at the para-position as an oxygen source. The ratios of alkane hydroxylation rate/alkene epoxidation rate were dependent on the nature of the para-substituent of the oxidant. We conclude that substrate and oxidant interact with each other during the oxygen atom transfer reaction, that is, oxidation reaction occurs before O-O bond cleavage, even in the reaction catalyzed by heme-thiolate, which is considered to promote O-O bond cleavage. The results of an (18)O-incorporation study that is frequently performed to determine the active intermediates derived from iron porphyrins were consistent with this conclusion.  相似文献   

20.
The reaction mechanism for the formation of the hydroxylating intermediate in aromatic amino acid hydroxylases (i.e., phenylalanine hydroxylase, tyrosine hydroxylase, tryptophan hydroxylase) was investigated by means of hybrid density functional theory. These enzymes use molecular oxygen to hydroxylate both the tetrahydrobiopterin cofactor and the aromatic amino acid. A mechanism is proposed in which dioxygen forms a bridging bond between the cofactor and iron. The product is an iron(II)-peroxy-pterin intermediate, and iron was found to be essential for the catalysis of this step. No stable intermediates involving a pterin radical cation and a superoxide ion O(2)(-) were found on the reaction pathway. Heterolysis of the O-O bond in the iron(II)-peroxy-pterin intermediate is promoted by one of the water molecules coordinated to iron and releases hydroxypterin and the high-valent iron oxo species Fe(IV)=O, which can carry out subsequent hydroxylation of aromatic rings. In the proposed mechanism, the formation of the bridging C-O bond is rate-limiting in the formation of Fe(IV)=O.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号