首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reaction of nitric acid with calcite aerosol at varying relative humidities has been studied under suspended particle conditions in an atmospheric reaction chamber using infrared absorption spectroscopy. The reactant concentration in the chamber, as well as the appearance of gas phase products and surface adsorbed species, was spectroscopically monitored before and after mixing with CaCO(3) (calcite) particles. The interaction with HNO(3) was found to lead to gas phase CO(2) evolution and increased water uptake due to heterogeneous conversion of the carbonate to particulate nitrate. The reaction was enhanced as the relative humidity of the system was increased, especially at relative humidities above the reported deliquescence point of particulate Ca(NO(3))(2). The measured reaction extent demonstrates that the total calcite particulate mass is available for reaction with HNO(3) and the conversion process is not limited to the particle surface. The spectroscopy of the surface formed nitrate suggests a highly concentrated solution environment with a significant degree of ion pairing. The implications of the HNO(3) loss and the formation of the particulate nitrate product for atmospheric chemistry are discussed.  相似文献   

2.
The heterogeneous chemistry of sulfur dioxide with CaCO(3) (calcite) aerosol as a function of relative humidity (RH) has been studied under isolated particle conditions in an atmospheric reaction chamber using infrared absorption spectroscopy. The reaction of SO(2) with calcite produced gas phase CO(2) as a product in addition to the conversion of the particulate carbonate to sulfite. The reaction extent was found to increase with elevated RH, as has been observed for the similar reaction with HNO(3), but much higher relative humidities were needed to significantly enhance the reaction. Mixed experiments in which calcite aerosol was exposed to both HNO(3) and SO(2) were also performed. The overall reaction extent at a given relative humidity did not appear to be increased by having both reactant gases present. The role of carbonate aerosol as an atmospheric sink for sulfur dioxide and particulate nitrogen and sulfur correlations are discussed.  相似文献   

3.
The heterogeneous uptake and reactivity of formic acid (HCOOH), a common gas-phase organic acid found in the environment, on calcium carbonate (CaCO(3)) particles have been investigated using a Knudsen cell reactor, Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). FTIR measurements show that the adsorption of formic acid on the surface of calcium carbonate results in the formation of calcium formate. Besides calcium formate, carbonic acid is also a reaction product under dry conditions (<1% RH). Under dry conditions and at low pressures, the initial uptake coefficient of formic acid on CaCO(3) particles is measured to be 3 +/- 1 x 10(-3) and decreases as the surface saturates with adsorbed products. The maximum surface coverage of formic acid under dry conditions is determined to be (3 +/- 1)x 10(14) molecules cm(-2). Under humidified conditions (RH >10%), adsorbed water on the surface of the carbonate particles participates in the surface reactivity of these particles, which results in the enhanced uptake kinetics and extent of reaction of this organic acid on CaCO(3) as well as opens up several new reaction pathways. These reaction pathways include: (i) the water-assisted dissociation of carbonic acid to CO(2) and H(2)O and (ii) the formation of calcium formate islands and crystallites, as evident by SEM images. The results presented here show that adsorbed water plays a potentially important role in the surface chemistry of gas-phase organic acids on calcium carbonate particles.  相似文献   

4.
The extent of passivation of calcite toward dissolution by aqueous acids arising from polymeric coatings based on polyacrylic acid or polyacrylonitrile is evaluated using a channel flow cell technique with microdisc electrode detection. In situ passivation with polyacrylic acid leads to a reduction in the reactivity of calcite toward acid attack with a reduction in the rate constant by up to an order of magnitude compared with untreated calcite. Ex situ passivation with polyacrylic acid for 24 h results in good coverage of the calcite by the polymer but it is shown to erode from the surface when exposed to an aqueous acid solution. In contrast, polyacrylonitrile is demonstrated to form a regular coating after exposure for just 1 h and offers robust potent protection from aqueous acid attack.  相似文献   

5.
The HO2 uptake coefficients (γ) for organic submicron aerosol particles were measured using an aerosol flow tube coupled with a chemical conversion/laser‐induced fluorescence technique under ambient conditions (760 Torr and 296 ± 2 K) and different values of relative humidity (RH) (28% and 68%). Determined uptake coefficients for succinic, glutaric, adipic, and pimelic acid aerosol particles at 28% RH were 0.07 ± 0.02, 0.07 ± 0.03, 0.02 ± 0.01, and 0.06 ± 0.03, respectively, whereas the γ values for those particles at 68% RH were 0.18 ± 0.07, 0.15 ± 0.04, 0.06 ± 0.01, and 0.13 ± 0.04, respectively. An increase in γ with increasing RH was observed for all the dicarboxylic acids, suggesting a contribution by water amount in the particle, aqueous phase chemistry, and uptake of HO2–H2O. The anomalously low γ values for adipic acid are likely related to its high crystallization RH and thus provide a new clue that the water amount and/or RH have a significant influence on HO2 uptake.  相似文献   

6.
Formation of C4 and smaller carboxylic acids from gas-phase ozonolysis of several alkenes under dry (relative humidity (RH) < 1%) and humid (RH = 65%) conditions have been investigated. We have developed a technique based on solid-phase microextraction (SPME) and gas chromatography/mass spectrometry (GC/MS) to quantify the acids, as well as other products, and applied it to the reactions of ozone with propene, trans-2-butene, 2,3-dimethyl-2-butene, and isoprene. Acetic acid yields from propene and trans-2-butene ozonolysis in the presence of an OH scavenger were 2.7 +/- 0.6 and 2.9 +/- 0.6%, respectively, under dry conditions and 1.8 +/- 0.4 and 2.3 +/- 0.5% at 65% RH. Isoprene ozonolysis produced methacrylic and propenoic acids with yields of 5.5 +/- 1 and 3.0 +/- 1%, under dry conditions and 4.1 +/- 1 and 1.5 +/- 0.3% under wet conditions, respectively. That water inhibits acid formation indicates that the water reaction with stabilized Criegee intermediates is at most a minor source of acids. Acids that may form as coproducts of the OH radical elimination pathway, acetic acid from 2,3-dimethylbutene and isoprene, and propenoic acid from isoprene were also observed with significant yields (up to 10%), although the production of acetic acid was not a linear function of the alkene reacted. Carbonyl products are also reported.  相似文献   

7.
Summary Observations out of two cloud events at elevated sites in the Black Forest/Germany and in the Vosges Mtn./France, are presented. The cloud-water, the particulate matter, and the gas-phase have been characterized chemically. Besides main ions, both inorganic and organic, the data sets include 17 trace elements. The air masses pollutant loadings indicated strong anthropogenic influence. The dominant cloud-water solutes were ammonium, nitrate and sulfate, as well as acidity. The latter was even more important than ammonium to counterbalance the strong acid anions in cloud-water collected at the Vosges Mtn. site. Acidity reached up to pH 2.8 in that case, whereas at the Black Forest site pH of cloud-water samples was between 4.9 and 4.0. Organic acids contributed a substantial part to cloud-water acidity at the Vosges Mtn. site, 11% by average. The fractions of the trace species incorporated into cloud-water, have been estimated based on cloud-water and aerosol loadings and differences have been identified. In particular, in one cloud a different behaviour of nitrate and sulfate was indicated in such a way, that a smaller fraction of sulfate was incorporated. The interstitial aerosol was enriched in carbon when compared to pre-cloud and after-cloud situations. Most of the elements specified, in particular those, which are thought to be dominated by crustal sources, were incorporated into the cloud-water to a higher extent, when compared to carbon. An increase of the free acid content of particulate matter (on a mass per volume of sampled air basis) was observed in both after-cloud situations when compared to the respective pre-cloud situations. No information is available, however, about the relative significance of transport from the source regions to the sites and source strength on one hand, and microphysical and chemical processes in the multiphase system on the other hand, which both may have contributed to changes in aerosol composition. When collecting cloud-water simultaneously with a pair of identical collectors beneath and above a conifer canopy, a higher liquid water content was found above the canopy, whereas higher concentrations of most of the solvents were found in cloud-water beneath the canopy.  相似文献   

8.
Material synthesis inspired by novel nacre architecture and mechanism is popular and has attracted more and more attention. In this paper, iso-oriented calcite tablets/layers and amino acid layers were formed alternately on calcite wafers. It is interesting that the neonatal calcite tablets/layers have the same crystal orientation with their inorganic substrates through amino acid layers. It is quite possible that the amino acid layers in this study could transfer crystal orientation from formed inorganic layers to neighboring neonatal layers due to their fixed and appropriate structures, which may imply the process of nacre formation, and the role of aligned organic matrix sheets in nacre. Moreover, it could provide a new way to produce oriented calcite tablets/layers.  相似文献   

9.
The uptake of formic (C1), propanoic (C3), butanoic (C4), and pentanoic (C5) acids onto ammonium nitrate (AN) has been investigated as a function of temperature and relative humidity using a Knudsen cell flow reactor coupled with FTIR-reflection absorption spectroscopy (FTIR-RAS). The uptake of acetone and methanol onto AN was also briefly studied. Initial uptake coefficients (gamma) were determined over the temperature range 200-240 K. Formic, propanoic, and butanoic acids exhibited efficient but temperature-dependent uptake on AN, with larger uptake coefficients observed at lower temperatures. Pentanoic acid was not taken up by AN under any of the conditions studied. Uptake of acetone and methanol onto AN was observed, but in insignificant amounts under atmospherically relevant conditions. Infrared spectra revealed that propanoic and butanoic acids ionized on the surface, despite the fact that the AN films were effloresced. Formic acid reacted with the AN film to produce ammonium formate and ionized nitric acid. Adding small amounts of water vapor (4% RH) to the chamber resulted in dramatically increased gamma values for all of the acids. Furthermore, the IR spectra showed the formation of a liquid layer when propanoic and butanoic acids adsorbed on the surface at RH = 20% and greater. Liquid water features were not observed at a similar relative humidity in the absence of the acids. These results show that small organic acids can be efficiently scavenged by AN and lead to enhanced water uptake under upper tropospheric conditions.  相似文献   

10.
The kinetics of reactive uptake of N2O5 on submicron aerosol particles containing humic acid and ammonium sulfate has been investigated as a function of relative humidity (RH) and aerosol composition using a laminar flow reactor coupled with a differential mobility analyzer (DMA) to characterize the aerosol. For single-component humic acid aerosol the uptake coefficient, gamma, was found to increase from 2 to 9 x 10(-4) over the range 25-75% RH. These values are 1-2 orders of magnitude below those typically observed for single-component sulfate aerosols (Phys. Chem. Chem. Phys. 2003, 5, 3453-3463;(1) Atmos. Environ. 2000, 34, 2131-2159(2)). For the mixed aerosols, gamma was found to decrease with increasing humic acid mass fraction and increase with increasing RH. For aerosols containing only 6% humic acid by dry mass, a decrease in reactivity of more than a factor of 2 was observed compared with the case for single-component ammonium sulfate. The concentration of liquid water in the aerosol droplets was calculated using the aerosol inorganic model (for the ammonium sulfate component) and a new combined FTIR-DMA system (for the humic acid component). Analysis of the uptake coefficients using the water concentration data shows that the change in reactivity cannot be explained by the change in water content alone. We suggest that, due to its surfactant properties, the main effect of the humic acid is to reduce the mass accommodation coefficient for N2O5 at the aerosol particle surface. This has implications for the use of particle hygroscopicity data for predictions of the rate of N2O5 hydrolysis.  相似文献   

11.
The oxidative evolution ("aging") of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter but remains poorly understood, particularly for the most oxidized fraction of the aerosol. Here we measure the kinetics and products of the heterogeneous oxidation of highly oxidized organic aerosol, with an aim of better constraining such atmospheric aging processes. Submicrometer particles composed of model oxidized organics-1,2,3,4-butanetetracarboxylic acid (C(8)H(10)O(8)), citric acid (C(6)H(8)O(7)), tartaric acid (C(4)H(6)O(6)), and Suwannee River fulvic acid-were oxidized by gas-phase OH in a flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to our previous studies of less-oxidized model systems (squalane, erythritol, and levoglucosan), particle mass did not decrease significantly with heterogeneous oxidation. Carbon content of the aerosol always decreased somewhat, but this mass loss was approximately balanced by an increase in oxygen content. The estimated reactive uptake coefficients of the reactions range from 0.37 to 0.51 and indicate that such transformations occur at rates corresponding to 1-2 weeks in the atmosphere, suggesting their importance in the atmospheric lifecycle of organic particulate matter.  相似文献   

12.
The way of precipitation process conducting is crucial for the final product properties and its further applications. In present experiments, the CaCO3 powders, produced by controlled fast precipitation trough gaseous CO2 absorption in Ca(OH)2 slurry, have been covered by two fatty acids: dodecanoic (lauric) acid and tetradecanoic (myristic) acid. This multiphase reaction was conducted in a new rotating disc reactor unit which enables to control inter- and intra-face mass and energy transfer as well as the macro- and micromixing effects in the reacting system. The obtained nanopowders have been observed by the use of the scanning electron microscope. The X-ray diffraction technique as well as the dynamic light scattering (DLS) and the thermogravimetric method (TG) were further used for its deep analyses. The experimental data have allowed for distinction between different fatty acid molecules species present on calcite surface (chemisorbed ones, inter-located between adsorbed to surface, formed mono- and bilayers and the soap) or free fatty acids molecules if presented in the sample. The amount of fatty acid species forming different layers on calcite as well as the size and distribution of fatty acid coated CaCO3 powders have been also calculated.  相似文献   

13.
Reactive uptake coefficients for nitric acid onto size-selected (d(ve) = 102 and 233 nm) sodium chloride aerosols are determined for relative humidities (RH) between 85% and 10%. Both pure sodium chloride and sodium chloride mixed with magnesium chloride (X(Mg/Na) = 0.114, typical of sea salt) are studied. The aerosol is equilibrated with a carrier gas stream at the desired RH and then mixed with nitric acid vapor at a concentration of 60 ppb in a laminar flow tube reactor. At the end of the reactor, the particle composition is determined in real time with a laser ablation single particle mass spectrometer. For relative humidities above the efflorescence relative humidity (ERH), the particles exist as liquid droplets and the uptake coefficient ranges from 0.05 at 85% RH to >0.1 near the ERH. The droplet sizes, relative humidity and composition dependencies, are readily predicted by thermodynamics. For relative humidities below the ERH, the particles are nominally "solid" and uptake depends on the amount of surface adsorbed water (SAW). The addition of magnesium chloride to the particle phase (0.114 mole ratio of magnesium to sodium) facilitates uptake by increasing the amount of SAW. In the presence of magnesium chloride, the uptake coefficient remains high (>0.1) down to 10% RH, suggesting that the displacement of chloride by nitrate in fine sea salt particles is efficient over the entire range of conditions in the ambient marine environment. In the marine boundary layer, displacement of chloride by nitrate in fine sea salt particles should be nearly complete within a few hours (faster in polluted areas)-a time scale much shorter than the particle residence time in the atmosphere.  相似文献   

14.
The reaction of N(2)O(5) on sea salt aerosol is a sink for atmospheric nitrogen oxides and a source of the Cl radical. We present room-temperature measurements of the N(2)O(5) loss rate on submicron artificial seawater (ASW) aerosol, performed with an entrained aerosol flow tube coupled to a chemical ionization mass spectrometer, as a function of aerosol phase (aqueous or partially crystalline), liquid water content, and size. We also present an analysis of the product growth kinetics showing that ClNO(2) is produced at a rate equal to N(2)O(5) loss, with an estimated lower limit yield of 50% at 50% relative humidity (RH). The reaction probability for N(2)O(5), gamma(N(2)(O)(5)), depends strongly on the particle phase, being 0.005 +/- 0.004 on partially crystalline ASW aerosol at 30% RH and 0.03 +/- 0.008 on aqueous ASW aerosol at 65% RH. At 50% RH, N(2)O(5) loss is relatively insensitive to particle size for radii greater than 100 nm, and gamma(N(2)(O)(5)) displays a statistically insignificant increase from 0.022 to approximately 0.03 for aqueous ASW aerosol over the RH range of 43-70%. We find that the presence of millimolar levels of hexanoic acid in the aerosol bulk decreases the gamma(N(2)(O)(5)) at 70% RH by a factor of 3-4 from approximately 0.025 to 0.008 +/- 0.004. This reduction is likely due to the partitioning of hexanoic acid to the gas-aerosol interface at a surface coverage that we estimate to be equivalent to a monolayer. This result is the first evidence that a monolayer coating of aqueous organic surfactant can slow the reactive uptake of atmospheric trace gases to aerosol.  相似文献   

15.
This work presents a study of the uptake of acetone, 2-butanone (methyl ethyl ketone), 2,4-pentanedione, and acetaldehyde by sulfuric acid solutions with an aim at understanding the reactivity of carbonyl compounds present in the atmosphere toward acidic aerosols. Experiments were performed in a rotating wetted-wall reactor coupled to a mass spectrometer at room temperature (298 +/- 3 K) with 0-96 wt % H(2)SO(4) solutions. For all compounds, a reactive uptake was observed at high acidity (>or=64 wt % H(2)SO(4)). The corresponding reactions were found to follow a second-order kinetics, and their rate constants, k (M(-1) s(-1)) were found to increase exponentially with acidity. These rate constants and their variations with acid concentration were in good agreement with the kinetic behavior of acid-catalyzed aldol condensation reported in the organic chemical literature, except for 2,4-pentanedione. The results of this work suggest that aldol condensation should be too slow to account for the enhanced organic aerosol mass observed in smog chamber studies and should have an even smaller contribution under atmospheric conditions. The rate constants of other compounds, such as large aldehydes, remain however to be measured. However, in order to contribute significantly to organic aerosol formation, a liquid phase reaction would have to result in an uptake coefficient of the order of 10(-2).  相似文献   

16.
It is well-known that chlorine active species (e.g., Cl(2), ClONO(2), ClONO) can form from heterogeneous reactions between nitrogen oxides and hydrogen chloride on aerosol particle surfaces in the stratosphere. However, less is known about these reactions in the troposphere. In this study, a potential new heterogeneous pathway involving reaction of gaseous HCl and HNO(3) on aluminum oxide particle surfaces, a proxy for mineral dust in the troposphere, is proposed. We combine transmission Fourier transform infrared spectroscopy with X-ray photoelectron spectroscopy to investigate changes in the composition of both gas-phase and surface-bound species during the reaction under different environmental conditions of relative humidity and simulated solar radiation. Exposure of surface nitrate-coated aluminum oxide particles, from prereaction with nitric acid, to gaseous HCl yields several gas-phase products, including ClNO, NO(2), and HNO(3), under dry (RH < 1%) conditions. Under humid more conditions (RH > 20%), NO and N(2)O are the only gas products observed. The experimental data suggest that, in the presence of adsorbed water, ClNO is hydrolyzed on the particle surface to yield NO and NO(2), potentially via a HONO intermediate. NO(2) undergoes further hydrolysis via a surface-mediated process, resulting in N(2)O as an additional nitrogen-containing product. In the presence of broad-band irradiation (λ > 300 nm) gas-phase products can undergo photochemistry, e.g., ClNO photodissociates to NO and chlorine atoms. The gas-phase product distribution also depends on particle mineralogy (Al(2)O(3) vs CaCO(3)) and the presence of other coadsorbed gases (e.g., NH(3)). These newly identified reaction pathways discussed here involve continuous production of active ozone-depleting chlorine and nitrogen species from stable sinks such as gas-phase HCl and HNO(3) as a result of heterogeneous surface reactions. Given that aluminosilicates represent a major fraction of mineral dust aerosol, aluminum oxide can be used as a model system to begin to understand various aspects of possible reactions on mineral dust aerosol surfaces.  相似文献   

17.
Recent field studies of collected aerosol particles, both marine and continental, show that the outermost layers contain long-chain (C >or= 18) organics. The presence of these long-chain organics could impede the transport of gases and other volatile species across the interface. This could effect the particle's composition, lifetime, and heterogeneous chemistry. In this study, the uptake rate of acetic acid vapor across a clean interface and through films of long-chain organics into an aqueous subphase solution containing an acid-base indicator (bromocresol green) was measured under ambient conditions using visible absorption spectroscopy. Acetic acid is a volatile organic compound (VOC) and is an atmospherically relevant organic acid. The uptake of acetic acid through single-component organic films of 1-octadecanol (C(18)H(38)O), 1-triacontanol (C(30)H(62)O), cis-9-octadecen-1-ol (C(18)H(36)O), and nonacosane (C(29)H(60)) in addition to two mixed films containing equimolar 1-triacontanol/nonacosane and equimolar 1-triacontanol/cis-9-octadecen-1-ol was determined. These species represent long-chain organic compounds that reside at the air-aqueous interface of atmospheric aerosols. The cis-9-octadecen-1-ol film had little effect on the net uptake rate of acetic acid vapor into solution; however, the uptake rate was reduced by almost one-half by an interfacial film of 1-triacontanol. The measured uptake rates were used to calculate the permeability of acetic acid through the various films which ranged from 1.5 x 10(-3) cm s(-1) for 1-triacontanol, the least permeable film, to 2.5 x 10(-2) cm s(-1) for cis-9-octadecen-1-ol, the most permeable film. Both mixed films had permeabilities that were between that of the single-component films comprising the mixture. This shows that the permeability of a mixed film may not be solely determined by the most permeable species in the mixture. The permeabilities of all the films studied here are discussed in relation to their molecular properties, pressure-area isotherms, and atmospheric implications.  相似文献   

18.
Scanning transmission X-ray microscopy combined with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and optical microscopy coupled with Fourier transform infrared spectroscopy (micro-FTIR) have been applied to observe hygroscopic growth and chemical changes in malonic acid particles deposited on substrates. The extent of the hygroscopic growth of particles has been quantified in terms of the corresponding water-to-solute ratios (WSR) based on STXM/NEXAFS and micro-FTIR data sets. WSR values derived separately from two applied methods displayed a remarkable agreement with previous data reported in the literature. Comparison of NEXAFS and FTIR spectra acquired at different relative humidity (RH) shows efficient keto-enol tautomerization of malonic acid, with the enol form dominating at higher RH. The keto-enol equilibrium constants were calculated using relevant peak intensities in the carbon and oxygen K-edge NEXAFS spectra as a function of RH. We report strong dependence of the equilibrium constant on RH, with measured values of 0.18 ± 0.03, 1.11 ± 0.14, and 2.33 ± 0.37 corresponding to 2, 50, and 90% RH, respectively. Enols are important intermediates in aldol condensation reactions pertaining to formation and atmospheric aging of secondary organic aerosol (SOA). The present knowledge assumes that constituents of atmospheric deliquesced particles undergo aqueous chemistry with kinetic and equilibrium constants analogous to reactions in bulk solutions, which would estimate absolute dominance of the keto form of carboxylic acids. For instance, the keto-enol equilibrium constant of malonic acid in diluted aqueous solution is <10(-4). Our results suggest that in deliquesced micrometer-size particles, carboxylic acids may exist in predominantly enol forms that need to be explicitly considered in atmospheric aerosol chemistry.  相似文献   

19.
Atmospheric organic aerosols play a major role in climate, demanding a better understanding of their formation mechanisms by contributing multiphase chemical reactions with the participation of water. The sunlight driven aqueous photochemistry of small 2-oxocarboxylic acids is a potential major source of organic aerosol, which prompted the investigations into the mechanisms of glyoxylic acid and pyruvic acid photochemistry reviewed here. While 2-oxocarboxylic acids can be contained or directly created in the particles, the majorities of these abundant and available molecules are in the gas phase and must first undergo the surface uptake process to react in, and on the surface, of aqueous particles. Thus, the work also reviews the acid-base reaction that occurs when gaseous pyruvic acid meets the interface of aqueous microdroplets, which is contrasted with the same process for acetic acid. This work classifies relevant information needed to understand the photochemistry of aqueous pyruvic acid and glyoxylic acid and motivates future studies based on reports that use novel strategies and methodologies to advance this field.  相似文献   

20.
Aerosol optical tweezers are used to probe the phase, morphology, and hygroscopicity of single aerosol particles consisting of an inorganic component, sodium chloride, and a water insoluble organic component, oleic acid. Coagulation of oleic acid aerosol with an optically trapped aqueous sodium chloride droplet leads to formation of a phase-separated particle with two partially engulfed liquid phases. The dependence of the phase and morphology of the trapped particle with variation in relative humidity (RH) is investigated by cavity enhanced Raman spectroscopy over the RH range <5% to >95%. The efflorescence and deliquescence behavior of the inorganic component is shown to be unaffected by the presence of the organic phase. Whereas efflorescence occurs promptly (<1 s), the deliquescence process requires both dissolution of the inorganic component and the adoption of an equilibrium morphology for the resulting two phase particle, occurring on a time-scale of <20 s. Comparative measurements of the hygroscopicity of mixed aqueous sodium chloride/oleic acid droplets with undoped aqueous sodium chloride droplets show that the oleic acid does not impact on the equilibration partitioning of water between the inorganic component and the gas phase or the time response of evaporation/condensation. The oxidative aging of the particles through reaction with ozone is shown to increase the hygroscopicity of the organic component.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号