首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We begin with the notion of K-flat projectivity. For each sup-algebra L we then introduce a binary relation L? on it. The K-flat projective sup-algebras are exactly such sup-algebras with each element a approximated by the element x, xL?a and the relation L? being stable with respect to the operations on L. Further on, we introduce the notion of a K-comonad and characterize K-flat projective sup-algebras as such sup-algebras having a coalgebra structure for the K-comonad.  相似文献   

2.
We characterize the additive operators preserving rank-additivity on symmetry matrix spaces. LetS n(F) be the space of alln×n symmetry matrices over a fieldF with 2,3 ∈F *, thenT is an additive injective operator preserving rank-additivity onS n(F) if and only if there exists an invertible matrixU∈M n(F) and an injective field homomorphism ? ofF to itself such thatT(X)=cUX ?UT, ?X=(xij)∈Sn(F) wherecF *,X ?=(?(x ij)). As applications, we determine the additive operators preserving minus-order onS n(F) over the fieldF.  相似文献   

3.
Power series type solutions are given for a wide class of linear and q-dimensional nonlinear Volterra equations on Rp. The basic assumption on the kernel K(xy) is that K(xxt) has a power series in x. For example, this holds for any analytic kernel.The kernel may be strongly singular, provided certain constants are finite. One and only one such power series solution exists. Its coefficients are given by a simple iterative formula. In many cases this may be solved explicitly. In particular an explicit formula for the resolvent is given.  相似文献   

4.
Consider the system, of linear equations Ax = b where A is an n × n real symmetric, positive definite matrix and b is a known vector. Suppose we are given an approximation to x, ξ, and we wish to determine upper and lower bounds for ∥ xξ ∥ where ∥ ··· ∥ indicates the euclidean norm. Given the sequence of vectors {ri}ik = 0, where ri = Ari − 1 and r0 = b − Aξ, it is shown how to construct a sequence of upper and lower bounds for ∥ xξ ∥ using the theory of moments.  相似文献   

5.
Let L(x)=a 1 x 1+a 2 x 2+???+a n x n , n≥2, be a linear form with integer coefficients a 1,a 2,…,a n which are not all zero. A basic problem is to determine nonzero integer vectors x such that L(x)=0, and the maximum norm ‖x‖ is relatively small compared with the size of the coefficients a 1,a 2,…,a n . The main result of this paper asserts that there exist linearly independent vectors x 1,…,x n?1∈? n such that L(x i )=0, i=1,…,n?1, and $$\|{\mathbf{x}}_{1}\|\cdots\|{\mathbf{x}}_{n-1}\|<\frac{\|{\mathbf{a}}\|}{\sigma_{n}},$$ where a=(a 1,a 2,…,a n ) and $$\sigma_{n}=\frac{2}{\pi}\int_{0}^{\infty}\left(\frac{\sin t}{t}\right)^{n}\,dt.$$ This result also implies a new lower bound on the greatest element of a sum-distinct set of positive integers (Erdös–Moser problem). The main tools are the Minkowski theorem on successive minima and the Busemann theorem from convex geometry.  相似文献   

6.
Any (measurable) function K from Rn to R defines an operator K acting on random variables X by K(X) = K(X1,..., Xn), where the Xj are independent copies of X. The main result of this paper concerns continuous selectors H, continuous functions defined in Rn and such that H(x1, x2,..., xn) ∈ {x1, x2,..., xn}. For each such continuous selector H (except for projections onto a single coordinate) there is a unique point ωH in the interval (0, 1) so that, for any random variable X, the iterates H(N) acting on X converge in distribution as N → ∞ to the ωH-quantile of X.  相似文献   

7.
Let Γ be a distance-regular graph of diameterd≥3. For each vertexx of Γ, letT(x) denote the Terwilliger algebra for Γ with respect tox. An irreducibleT(x)-moduleW is said to bethin if dimE i * (x)W≤1 for 0≤id, whereE i * (x) is theith dual idempotent for Γ with respect tox. The graph Γ isthin if for each vertexx of Γ, every irreducibleT(x)-module is thin. Aregular generalized quadrangle is a bipartite distance-regular graph with girth 8 and diameter 4. Our main results are as follows: Theorem. Let Γ=(X,R) be a distance-regular graph with diameter d≥3 and valency k≥3. Then the following are equivalent:
  1. Γis a regular generalized quadrangle.
  2. Γis thin and c 3=1.
Corollary. Let Γ=(X,R) be a thin distance-regular graph with diameter d≥3 and valency k≥3. Then Γ has girth 3, 4, 6, or 8. Then girth of Γ is 8 exactly when Γ is a regular generalized quadrangle.  相似文献   

8.
Given the orthonormal basis of Hecke eigenforms in S2k(Γ(1)), Luo established an associated probability measure dμk on the modular surface Γ(1)\H that tends weakly to the invariant measure on Γ(1)\H. We generalize his result to the arithmetic surface Γ0(N)\H where N?1 is square-free  相似文献   

9.
A full-rank under-determined linear system of equations Ax = b has in general infinitely many possible solutions. In recent years there is a growing interest in the sparsest solution of this equation—the one with the fewest non-zero entries, measured by ∥x0. Such solutions find applications in signal and image processing, where the topic is typically referred to as “sparse representation”. Considering the columns of A as atoms of a dictionary, it is assumed that a given signal b is a linear composition of few such atoms. Recent work established that if the desired solution x is sparse enough, uniqueness of such a result is guaranteed. Also, pursuit algorithms, approximation solvers for the above problem, are guaranteed to succeed in finding this solution.Armed with these recent results, the problem can be reversed, and formed as an implied matrix factorization problem: Given a set of vectors {bi}, known to emerge from such sparse constructions, Axi = bi, with sufficiently sparse representations xi, we seek the matrix A. In this paper we present both theoretical and algorithmic studies of this problem. We establish the uniqueness of the dictionary A, depending on the quantity and nature of the set {bi}, and the sparsity of {xi}. We also describe a recently developed algorithm, the K-SVD, that practically find the matrix A, in a manner similar to the K-Means algorithm. Finally, we demonstrate this algorithm on several stylized applications in image processing.  相似文献   

10.
We consider the problem of searching for a best LAD-solution of an overdetermined system of linear equations Xa=z, X∈?m×n, mn, \(\mathbf{a}\in \mathbb{R}^{n}, \mathbf {z}\in\mathbb{R}^{m}\). This problem is equivalent to the problem of determining a best LAD-hyperplane x?a T x, x∈? n on the basis of given data \((\mathbf{x}_{i},z_{i}), \mathbf{x}_{i}= (x_{1}^{(i)},\ldots,x_{n}^{(i)})^{T}\in \mathbb{R}^{n}, z_{i}\in\mathbb{R}, i=1,\ldots,m\), whereby the minimizing functional is of the form
$F(\mathbf{a})=\|\mathbf{z}-\mathbf{Xa}\|_1=\sum_{i=1}^m|z_i-\mathbf {a}^T\mathbf{x}_i|.$
An iterative procedure is constructed as a sequence of weighted median problems, which gives the solution in finitely many steps. A criterion of optimality follows from the fact that the minimizing functional F is convex, and therefore the point a ?∈? n is the point of a global minimum of the functional F if and only if 0?F(a ?).
Motivation for the construction of the algorithm was found in a geometrically visible algorithm for determining a best LAD-plane (x,y)?αx+βy, passing through the origin of the coordinate system, on the basis of the data (x i ,y i ,z i ),i=1,…,m.  相似文献   

11.
Let ?? be a natural number. A function f: ? p ?? K into a non-Archimedeanly valued complete field K ? ? p is ??-times continuously differentiable if and only if its Mahler coefficients (a n ) n??? obey |a n |n ?? ?? 0 as n ?? ??. For a real number r ?? 0, this suggests the ad hoc definition by [1] of a C r -function f: ? p ?? K by asking its Mahler coefficients (a n ) n??? to satisfy |a n |n r ?? 0 as n?? ??. We will present for functions f: X ?? K on subsets X ? K without isolated points a general pointwise notion of r-fold differentiability through iterated difference quotients, subsequently shown on the domain X = ? p to coincide with the one given above. For functions on open domains, we prove this notion to admit a handier characterization by its Taylor polynomial up to degree ?r?.  相似文献   

12.
For r = (r1,…, rd) ∈ ?d the mapping τr:?d →?d given byτr(a1,…,ad) = (a2, …, ad,−⌊r1a1+…+ rdad⌋)where ⌊·⌋ denotes the floor function, is called a shift radix system if for each a ∈ ?d there exists an integer k > 0 with τrk(a) = 0. As shown in Part I of this series of papers, shift radix systems are intimately related to certain well-known notions of number systems like β-expansibns and canonical number systems. After characterization results on shift radix systems in Part II of this series of papers and the thorough investigation of the relations between shift radix systems and canonical number systems in Part III, the present part is devoted to further structural relationships between shift radix systems and β-expansions. In particular we establish the distribution of Pisot polynomials with and without the finiteness property (F).  相似文献   

13.
LetW(x):= exp(-{tiQ(x})), where, for example, Q(x) is even and convex onR, and Q(x)/logx → ∞ asx → ∞. A result of Mhaskar and Saff asserts that ifa n =a n (W) is the positive root of the equation $$n = ({2 \mathord{\left/ {\vphantom {2 \pi }} \right. \kern-\nulldelimiterspace} \pi })\int_0^1 {{{a_n xQ'(a_n x)} \mathord{\left/ {\vphantom {{a_n xQ'(a_n x)} {\sqrt {1 - x^2 } }}} \right. \kern-\nulldelimiterspace} {\sqrt {1 - x^2 } }}dx,}$$ then, given any polynomialP n(x) of degree at mostn, the sup norm ofP n(x)W(a n x) overR is attained on [-1, 1]. In addition, any sequence of weighted polynomials {p n (x)W(a n x)} 1 that is uniformly bounded onR will converge to 0, for ¦x¦>1. In this paper we show that under certain conditions onW, a function g(x) continuous inR can be approximated in the uniform norm by such a sequence {p n (x)W(a n x)} 1 if and only if g(x)=0 for ¦x¦? 1. We also prove anL p analogue for 0W(x)=exp(?|x| α ), when α >1. Further applications of our results are upper bounds for Christoffel functions, and asymptotic behavior of the largest zeros of orthogonal polynomials. A final application is an approximation theorem that will be used in a forthcoming proof of Freud's conjecture for |x| p exp(?|x| α ),α > 0,p > ?1.  相似文献   

14.
Let ${{\bf D}_{\bf x} := \sum_{i=1}^n \frac{\partial}{\partial x_i} e_i}$ be the Euclidean Dirac operator in ${\mathbb{R}^n}$ and let P(X) = a m X m + . . . + a 1 Xa 0 be a polynomial with real coefficients. Differential equations of the form P(D x )u(x) = 0 are called homogeneous polynomial Dirac equations with real coefficients. In this paper we treat Dirichlet type problems of the a slightly less general form P(D x )u(x) = f(x) (where the roots are exclusively real) with prescribed boundary conditions that avoid blow-ups inside the domain. We set up analytic representation formulas for the solutions in terms of hypercomplex integral operators and give exact formulas for the integral kernels in the particular cases dealing with spherical and concentric annular domains. The Maxwell and the Klein–Gordon equation are included as special subcases in this context.  相似文献   

15.
Let ?= {?i,i ≥1} be a sequence of independent Bernoulli random variables (P{?i = 0} = P{?i = 1 } = 1/2) with basic probability space (Ω, A, P). Consider the sequence of partial sums Bn=?1+...+?n, n=1,2..... We obtain an asymptotic estimate for the probability P{P-(Bn) > >} for >≤ne/log log n, c a positive constant.  相似文献   

16.
We establish that the elliptic equation Δu+K(x)up+μf(x)=0 in Rn has infinitely many positive entire solutions for small μ?0 under suitable conditions on K, p, and f.  相似文献   

17.
We consider the set S r,n of periodic (with period 1) splines of degree r with deficiency 1 whose nodes are at n equidistant points xi=i / n. For n-tuples y = (y0, ... , yn-1), we take splines s r,n (y, x) from S r,n solving the interpolation problem
$$s_{r,n} (y,t_i ) = y_i,$$
where t i = x i if r is odd and t i is the middle of the closed interval [x i , x i+1 ] if r is even. For the norms L r,n * of the operator ys r,n (y, x) treated as an operator from l1 to L1 [0, 1] we establish the estimate
$$L_{r,n}^ * = \frac{4}{{\pi ^2 n}}log min(r,n) + O\left( {\frac{1}{n}} \right)$$
with an absolute constant in the remainder. We study the relationship between the norms L r,n * and the norms of similar operators for nonperiodic splines.
  相似文献   

18.
Erd?s and Selfridge [3] proved that a product of consecutive integers can never be a perfect power. That is, the equation x(x?+?1)(x?+?2)...(x?+?(m???1))?=?y n has no solutions in positive integers x,m,n where m, n?>?1 and y?∈?Q. We consider the equation $$ (x-a_1)(x-a_2) \ldots (x-a_k) + r = y^n $$ where 0?≤?a 1?<?a 2?<???<?a k are integers and, with r?∈?Q, n?≥?3 and we prove a finiteness theorem for the number of solutions x in Z, y in Q. Following that, we show that, more interestingly, for every nonzero integer n?>?2 and for any nonzero integer r which is not a perfect n-th power for which the equation admits solutions, k is bounded by an effective bound.  相似文献   

19.
Let q ∈ {2, 3} and let 0 = s0 < s1 < … < sq = T be integers. For m, nZ, we put ¯m,n = {jZ| m? j ? n}. We set lj = sj − sj−1 for j ∈ 1, q. Given (p1,, pq) ∈ Rq, let b: ZR be a periodic function of period T such that b(·) = pj on sj−1 + 1, sj for each j ∈ 1, q. We study the spectral gaps of the Jacobi operator (Ju)(n) = u(n + 1) + u(n − 1) + b(n)u(n) acting on l2(Z). By [λ2j , λ2j−1] we denote the jth band of the spectrum of J counted from above for j ∈ 1, T. Suppose that pmpn for mn. We prove that the statements (i) and (ii) below are equivalent for λ ∈ R and i ∈ 1, T − 1.  相似文献   

20.
Given a subset S of Z and a sequence I = (In)n=1 of intervals of increasing length contained in Z, let
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号