首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Comparative studies on the voltammetric reduction of the alpha and gamma isomers of Dawson [S(2)W(18)O(62)](4)(-) and alpha, beta, and gamma forms of Keggin [SiW(12)O(40)](4)(-) polyoxometalate anions have been undertaken. For the six reversible one-electron [S(2)W(18)O(62)](4)(-)(/5)(-)(/6)(-)(/7)(-)(/8)(-)(/9)(-)(/10)(-) processes in acetonitrile, reversible potentials (E(0)(')) were found to be independent of isomeric form within experimental error (+/-5 mV). However, because both the alpha and gamma* isomers of [Bu(4)N](4)[S(2)W(18)O(62)] are insoluble in water, solid-state voltammetric studies with microcrystals adhered to electrode surfaces in contact with aqueous Et(4)NCl and Bu(4)NCl electrolyte media were also possible. Although no isomeric distinction was again detected in the solid-state studies, it was found that reduction of adhered solid by four or more electron equivalents led to rapid dissolution. When Et(4)NCl was the electrolyte, this dissolution process coupled with potential cycling experiments enabled conventional solution-phase data to be obtained in water for the analogous six one-electron reduction steps previously detected in acetonitrile. A strong medium effect attributed to Lewis acidity effects was apparent upon comparison with E(0)(') data obtained in water and acetonitrile. In contrast, with the [SiW(12)O(40)](4)(-) system, E(0)(') values for the [SiW(12)O(40)](4)(-)(/5)(-)(/6)(-)(/7)(-) processes in acetonitrile exhibited a larger (about 70 mV) dependence on isomeric form, and the isomerization step, [gamma-SiW(12)O(40)](6)(-)--> [alpha-SiW(12)O(40)](6)(-), was detected on the voltammetric time scale. The influence of isomeric form on reversible potential data is considered in terms of structural and charge density differences exhibited in the [S(2)W(18)O(62)](4)(-) and [SiW(12)O(40)](4)(-) systems studied in this paper and published data available on the alpha, beta, gamma, and gamma isomers of [As(2)W(18)O(62)](6)(-) and [P(2)W(18)O(62)](6)(-) Dawson anions and Keggin systems.  相似文献   

2.
beta-[SiW(12)O(40)](4)(-) (C(3)(v) symmetry) is sufficiently higher in energy than its alpha-isomer analogue that effectively complete conversion to alpha-[SiW(12)O(40)](4)(-) (T(d)) is observed. By contrast, beta- and alpha-[AlW(12)O(40)](5)(-) (beta- and alpha-1; C(3)(v) and T(d), respectively) are sufficiently close in energy that both isomers are readily seen in (27)Al NMR spectra of equilibrated (alpha-beta) mixtures. Recently published DFT calculations ascribe the stability of beta-1 to an electronic effect of the large, electron-donating [AlO(4)](5)(-) (T(d)) moiety encapsulated within the polarizable, fixed-diameter beta-W(12)O(36) (C(3)(v)) shell. Hence, no unique structural distortion of beta-1 is needed or invoked to explain its unprecedented stability. The results of these DFT calculations are confirmed by detailed comparison of the X-ray crystal structure of beta-1 (beta-Cs(4.5)K(0.5)[Al(III)W(12)O(40)].7.5H(2)O; orthorhombic, space group Pmc2(1), a = 16.0441(10) A, b = 13.2270(8) A, c = 20.5919(13) A, Z = 4 (T = 100(2) K)) with previously reported structures of alpha-1, alpha- and beta-[SiW(12)O(40)](4)(-), and beta(1)-[SiMoW(11)O(40)](4)(-).  相似文献   

3.
Inorganic-organic hybrid materials based on Keggin polyoxometalate building blocks combined with Cu(II)/Cu(I) and flexible fluconazole ligand [1-(2,4-difluorophenyl)-1,1-bis[(1H-1,2,4-triazol-1-yl)methyl]methanol] (Hfcz) have been obtained by hydrothermal methods, namely, [Cu(II)(2)(Hfcz)(4)(SiW(12)O(40))].3H(2)O (1), [Cu(II)(4)(fcz)(4)(H(2)O)(4)(SiMo(12)O(40))].6H(2)O (2), [Cu(II)(2)(fcz)(2)][Cu(II)(4)(fcz)(4)(SiW(12)O(40))][Cu(II)(2)(fcz)(2)(H(2)O)(2)(SiW(12)O(40))].6H(2)O (3), (Et(3)NH)(2)[Cu(I)(2)(Hfcz)(2)(SiW(12)O(40))].2H(2)O (4), (Et(3)NH)(2)[Cu(I)(2)(Hfcz)(2)(SiW(12)O(40))].H(2)O (5) and [Cu(I)(4)(Hfcz)(4)(SiMo(12)O(40))] (6). Their structures have been determined by single-crystal X-ray diffraction analyses, and the compounds are further characterized by elemental analyses, IR spectra and thermogravimetric (TG) analyses. In 1, Cu(II) cations are bridged by fluconazole ligands to form a 3D lvt coordination polymeric network, which is connected by (SiW(12)O(40))(4-) anions to form a complicated 3D (4,6)-connected framework with the topology of (4(2).6(4))(4(6).6(7).8(2))(2). In 2, two fcz(-) anions chelate two Cu(2+) cations to form a [Cu(fcz)](2)(2+) dimer, which is bridged by (SiW(12)O(40))(4-) polyanions to generate a 2D (4,4) grid. Compound 3 is formed by three types of co-crystallizing subunits including a dimer [Cu(fcz)](2)(2+), a dumbbell molecule [Cu(4)(fcz)(4)(SiW(12)O(40))] and an infinite chain {[Cu(2)(fcz)(2)(H(2)O)(2)(SiW(12)O(40))](2-)}(infinity). In compounds 4 and 5, Hfcz ligands link Cu(+) cations to generate 1D coordination polymeric units, and (SiW(12)O(40))(4-) polyanions connect these metal-organic units to form two types of (6(3)) sheets which are topological isomerism. In compound 6, (SiMo(12)O(40))(4-) polyanions fixed in Cu(I)-Hfcz square rings are further extended into a 2D sheet via linking Cu(I) atoms of different rings. By carefully inspection of the structures of 1-6, it is believed that various transition-metal organic units and Keggin polyanions with different coordination modes are important for the formation of the different structures. In addition, electrochemical behaviors of compounds 1, 2, 5 and 6 have been investigated.  相似文献   

4.
The reaction of Mn(III) salen-type complexes with di- and tetraanionic α-Keggin-type polyoxometalates (POMs) was performed, and three types of Coulombic aggregations containing Mn(III) out-of-plane dimeric units (abbreviated as [Mn(2)](2+)) that are potentially single-molecule magnets (SMMs) with an S(T) = 4 ground state were synthesized: [Mn(2)(5-MeOsaltmen)(2)(acetone)(2)][SW(12)O(40)] (1), [Mn(2)(salen)(2)(H(2)O)(2)](2)[SiW(12)O(40)] (2), and [Mn(5-Brsaltmen)(H(2)O)(acetone)](2)[{Mn(2)(5-Brsaltmen)(2)}(SiW(12)O(40))] (3), where 5-Rsaltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(5-R-salicylideneiminate) with R = MeO (methoxy), Br (bromo) and salen(2-) = N,N'-ethylenebis(salicylideneiminate). Compound 1 with a dianionic POM, [SW(12)O(40)](2-), is composed of a 1:1 aggregating set of [Mn(2)](2+)/POM, and 2, with a tetraanionic POM, [SiW(12)O(40)](4-), is a 2:1 set. Compound 3 with [SiW(12)O(40)](4-) forms a unique 1D coordinating chain with a [-{Mn(2)}-POM-](2-) repeating unit, for which a hydrogen-bonded dimeric unit ([Mn(5-Brsaltmen)(H(2)O)(acetone)](2)(2+)) is present as a countercation. Independent of the formula ratio of [Mn(2)](2+)/POM, Mn(III) dimers and POM units in 1-3 form respective segregated columns along a direction of the unit cell, which make an alternate packing to separate evenly identical species in a crystal. The nearest intermolecular Mn···Mn distance is found in the order 2 < 3 < 1. The segregation of the [Mn(2)](2+) dimer resulted in interdimer distances long enough to effectively reduce the intermolecular magnetic interaction, in particular in 1 and 3. Consequently, an intrinsic property, SMM behavior, of Mn(III) dimers has been characterized in this system, even though the interdimer interactions are still crucial in the case of 2, where a long-range magnetic order competitively affects slow relaxation of the magnetization at low ac frequencies.  相似文献   

5.
The influence of the nature of alkali metal cations on the structure of the species obtained from the trivacant precursor A-alpha-[SiW(9)O(34)](10-) has been studied. Starting from the potassium salt 1, K(10)A-alpha-[SiW(9)O(34)].24H(2)O, the sandwich-type complex 2, K(10.75)[Co(H(2)O)(6)](0.5)[Co(H(2)O)(4)Cl](0.25)A-alpha-[K(2)(Co(H(2)O)(2))(3)(SiW(9)O(34) )(2)].32H(2)O, has been obtained. The crystal structures of these two compounds consist of two A-alpha-[SiW(9)O(34)](10-) anions linked by a set of potassium (1) or cobalt plus potassium cations (2), and the relative orientation of the two half-anions is the same. Attempts to link two A-alpha-[SiW(9)O(34)](10-) anions by tungsten atoms instead of cobalt failed whatever the alkali metal cation. Moreover, the nondisordered structure of Cs(15)[K(SiW(11)O(39))(2)].39H(2)O is described. Two [SiW(11)O(39)](8-) anions are linked through a potassium cation with a "trans-oid" conformation, and the potassium occupies a cubic coordination site.  相似文献   

6.
Nonplanar Sn(IV)-porphyrin complexes, [Sn(TMPP(Ph)(8))-Cl(2)] (1) and [Sn(TMPP(Ph)(8))(OMe)(2)] (2) (TMPP(Ph)(8): 5,10,15,20-tetrakis(4-methoxyphenyl)-2,3,7,8,12,13,17,18-octaphenylporphyrinato), were prepared and characterized by spectroscopic and electrochemical methods together with X-ray crystallography. Variable-temperature (1)H NMR study revealed that the coordination of the methoxo ligand of 2 is weak enough in solution to enhance the axial ligand exchange with a Keggin-type phosphotungstate (α-[PW(12)O(40)](3-)) due to the steric stress between the axial methoxo ligand and the peripheral phenyl groups of the porphyrin ligand. The formation of a novel 1:1 donor-acceptor complex, [Sn(TMPP(Ph)(8))(OMe)(α-[PW(12)O(40)])](2-) (4) was confirmed by (1)H NMR and UV-vis spectral titrations, and also by MALDI-TOF-MS measurements. Electrochemical measurements for the donor-acceptor complex in PhCN revealed that the Sn(IV)-TMPP(Ph)(8) moiety acts as an electron donor and the α-[PW(12)O(40)](3-) moiety acts as an electron acceptor and that the energy level of the electron-transfer (ET) state of the 1:1 complex (1.17 eV) is lower than that of the triplet excited states of the SnTMPP(Ph)(8) complex (1.31 eV). Femtosecond and nanosecond laser flash photolysis measurements indicate that intersystem crossing from the singlet excited sate to the triplet excited state occurs followed by intramolecular photoinduced electron transfer from the triplet excited state of the Sn(IV)-TMPP(Ph)(8) moiety to the α-[PW(12)O(40)](3-) moiety in the 1:1 complex in benzonitrile.  相似文献   

7.
Yuan M  Li Y  Wang E  Tian C  Wang L  Hu C  Hu N  Jia H 《Inorganic chemistry》2003,42(11):3670-3676
Three novel polyoxometalate derivatives decorated by transition metal complexes have been hydrothermally synthesized. Compound 1 consists of [PMo(VI)(6)Mo(V)(2)V(IV)(8)O(44)[Co (2,2'-bipy)(2)(H(2)O)](4)](3+) polyoxocations and [PMo(VI)(4-)Mo(V)(4)V(IV)(8)O(44)[Co(2,2'-bipy)(2)(H(2)O)](2)](3-) polyoxoanions, which are both built on mixed-metal tetracapped [PMo(8)V(8)O(44)] subunits covalently bonded to four or two [Co(2,2'-bpy)(2)(H(2)O)](2+) clusters via terminal oxo groups of the capping V atoms. Compound 2 is built on [PMo(VI)(8)V(IV)(6)O(42)[Cu(I)(phen)](2)](5-) clusters constructed from mixed-metal bicapped [PMo(VI)(8)V(IV)(6)O(42)](7-) subunits covalently bonded to two [Cu(phen)](+) fragments in the similar way to 1. The structure of 3 is composed of [PMo(VI)(9)Mo(V)(3)O(40)](6-) units capped by two divalent Ni atoms via four bridging oxo groups. The crystal data for these are the following: C(120)H(126)Co(6)Mo(16)N(24)O(103)P(2)V(16) (1), triclinic P1, a = 15.6727(2) A, b = 17.3155(3) A, c = 19.5445(2) A, alpha = 86.1520(1) degrees, beta = 81.2010(1) degrees, gamma = 63.5970(1) degrees, Z = 1; C(120)H(85)Cu(6-)Mo(8)N(20)O(44)PV(6) (2), triclinic P1, a = 14.565(4) A, b = 15.899(3) A, c = 16.246(4) A, alpha = 116.289(2) degrees, beta = 103.084(2) degrees, gamma = 94.796(2) degrees, Z = 1; C(60)H(40)Mo(12)N(10)Ni(3)O(40)P (3), monoclinic P2(1)/c, a = 14.804(3) A, b = 22.137(4) A, c = 25.162(5) A, alpha = 90 degrees, beta = 98.59(3) degrees, gamma = 90 degrees, Z = 4.  相似文献   

8.
Five POM-based hybrid materials have been designed and synthesized based on different metal ions under hydrothermal conditions, namely, [Zn(Hfcz)(H(2)O)(3)](H(3)fcz)(SiMo(12)O(40)).3H(2)O (1), [Cd(2)(Hfcz)(6)(H(2)O)(2)](SiMo(12)O(40)).H(2)O (2), [Co(2)(Hfcz)(2)(SiW(12)O(40))](H(3)fcz)(2)(SiW(12)O(40)).10H(2)O (3), [Ni(2)(Hfcz)(4)(H(2)O)(2)](SiW(12)O(40)).5H(2)O (4) and [Ag(4)(Hfcz)(2)(SiMo(12)O(40))] (5), where Hfcz is fluconazole [2-(2,4-difluorophenyl)-1,3-di(1H-1,2,4-triazol-1-yl)propan-2-ol]. Their crystal structures have been determined by X-ray diffraction, elemental analyses, IR spectra, and thermogravimetric analyses (TGA). There are 1D mono and double chain-like metal-organic units in compounds 1 and 2, respectively. Polyoxometalates and metal-organic units co-crystallize through hydrogen bonds. In compound 3, metal-organic sheets are pillared by one kind of polyanion through covalent connections to generate a sandwich double-sheet. The other kind of polyanion acts as a counter-ion and lies in two adjacent sandwich double-sheets through non-covalent interactions. Polyanions covalently link metal-organic sheets to extend to an unusual 3D 5-connected framework with the (4(4).6(6)) topology in 4. In compound 5, polyanions link metal-organic chains to form a sheet through covalent connections. It is interesting that compound 5 shows an intricate (4,5,10)-connected framework with (4(4).6(2))(4)(4(8).6(2))(2)(4(14).6(19).8(12)) topology based on two kinds of Ag cations as four-connected and five-connected nodes, and polyanions as ten-connected nodes, when AgO interactions are considered. It represents the highest connected network topology presently known for polyoxometalate systems. The structural differences among 1-5 indicate the importance of different metal-organic units, coordination modes of polyanions for framework formation, and the interactions between polyanions and metal-organic units. In addition, the luminescent properties of compounds 1, 2 and 5, and electrochemical behaviours of compounds 1-5 have been investigated.  相似文献   

9.
Ou GC  Jiang L  Feng XL  Lu TB 《Inorganic chemistry》2008,47(7):2710-2718
The reactions of a racemic four-coordinated nickel(II) complex [Ni(alpha-rac-L)](ClO4)2 (containing equal amount of SS and RR enantiomers) with l- and d-phenylalanine in acetonitrile/water gave two less-soluble six-coordinated enantiomers of {[Ni( f-SS-L)(l-Phe)](ClO4)}n (Delta-1) and {[Ni(f- RR-L)(d-Phe)](ClO4)}n (Lambda-1), respectively. Evaporation the remaining solutions gave two six-coordinated diastereomers of {[Ni 3(f- RR-L)3(l-Phe)2(H 2O)](ClO4)4}n (a-2) and {[Ni3(f- SS-L)3(d-Phe)2(H2O)](ClO4)4}n (b-2), respectively (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, Phe(-) = phenylalanine anion). The reaction of [Ni(alpha-rac-L)](ClO4)2 with dl-Phe(-) gave a conglomerate of c-1; in which, the SS and RR enantiomers preferentially coordinate to l- and d-Phe(-) respectively to give a racemic mixture of Delta-1 and Lambda-1, and the spontaneous resolution occurs during the reaction, in which each crystal crystallizes to become enantiopure. Removing Phe(-) from Delta-1 and Lambda-1 using perchloric acid gave two enantiomers of [Ni(alpha-SS-L)](ClO4)2 (S-3) and [Ni(alpha-RR-L)](ClO4)2 (R-3). Dissolving S-3 and R-3 in acetonitrile gave two six-coordinated enantiomers of [Ni( f-SS-L)(CH3CN)2](ClO4)2 (S-4) and [Ni( f- RR-L)(CH3CN)2](ClO4)2 (R-4), while dissolving [Ni(alpha-rac-L)](ClO4)2 in acetonitrile gave a racemic twining complex [Ni(f-rac-L)(CH3CN)2](ClO4)2 (rac-4). Delta-1 and Lambda-1 belong to supramolecular stereoisomers, which are constructed via hydrogen bond linking of [Ni( f-SS-L)(l-Phe)](+) and [Ni(f-RR-L)(d-Phe)](+) monomers to form 1D homochiral right-handed and left-handed helical chains, respectively. The reaction of S-3 with d-Phe(-) gave {[Ni(f-SS-L)(d-Phe)](ClO4)}n (5), which shows a motif of a 1D hydrogen bonded zigzag chain instead of a 1D helical chain. Compound a-2/ b-2 contains dimers of [{Ni(f-RR-L)}2(l-Phe)(H2O)](3+)/[{Ni( f- SS-L)}2(d-Phe)(H2O)](3+) and 1D zigzag chains of {[Ni(f-RR-L)(l-Phe)](+)}n /{[Ni(f-SS-L)(d-Phe)](+) n . The homochiral nature of Delta-1/Lambda-1, a-2/b-2, S-3/R-3, and S-4/R-4 are confirmed by the results of circular dichroism (CD) spectra measurements.  相似文献   

10.
A series of systematic DFT calculations were conducted on Keggin [SiW(9)M(3)O(40)](n-), M = Mo, V, and Nb; and Wells-Dawson anions [P(2)M(18)O(62)],(6-) M = W and Mo; [P(2)M(15)M(3)'O(62)](m-), M = W and Mo, M' = W, Mo, and V to analyze the redox properties and the basicity of the external oxygen sites in polyoxometalates with nonequivalent addenda metals. The energy and composition of the lowest unoccupied orbitals, formally delocalized over the addenda atoms, determine the redox properties of a polyoxometalate. When a Mo(6+) substitutes one W(6+) in the 1:12 tungstate, the energy of the LUMO decreases and the cluster is more easily reduced. The tungstoniobates behave differently because the niobium orbitals insert into the tungsten band and the reduction of [SiW(9)Nb(3)O(40)](7-) yields the blue species SiW(9)Nb(3) 1e and not the cluster SiW(9)Nb(2)Nb(IV). In Wells-Dawson structures, the polar and equatorial sites have different electron affinities and the reduction preferentially occurs in the equatorial sites. Inserting ions with larger electron affinities into the polar sites can modify this traditional conduct. Hence, the trisubstituted [P(2)W(15)V(3)O(62)](9-) anion is reduced in the vanadium polar sites. By means of molecular electrostatic potential maps and the relative energy of the various protonated forms of [SiW(9)V(3)O(40)](7-) and [SiW(9)Mo(3)O(40)](4-), we established the basicity scale: OV(2) > OMo(2) > OW(2) > OV > OW > OMo. Finally, a continuum model for the solvent enabled us to compare anions with different total charges.  相似文献   

11.
New polyoxometalate 'sandwiches' have been formed where two [P(2)W(15)O(56)](12-) lacunary Dawson clusters encapsulate two transition metal ions to give clusters with the general formula [M(II)(2)(P(2)W(15)O(56))(2)](20-) (where M = Mn, Co, and Ni respectively), [Fe(III)(2)(P(2)W(15)O(56))(2)](18-), and [Cu(II)(4)(P(2)W(15)O(56))(2)](16-). The Mn, Co, and Ni clusters exhibit a hitherto unseen αββα isomeric geometry and all five compounds are associated with tetrabutylammonium cations which allow for their dissolution in non-aqueous solvent.  相似文献   

12.
Reactions of a saddle-distorted Mo(V)-porphyrin complex, [Mo(DPP)(O)(H(2)O)]ClO(4) (1·ClO(4); DPP(2-) = dodecaphenylporphyrin dianion), with tetra-n-butylammonium (TBA) salts of Keggin-type heteropolyoxomatalates (POMs), α-[XW(12)O(40)](n-) (X = P, n = 3, 2; X = Si, n = 4, 3; X = B, n = 5; 4), in ethyl acetate/acetonitrile gave 2:1 complexes formulated as [{Mo(DPP)(O)}(2)(HPW(12)O(40))] (5), [{Mo(DPP)(O)}(2)(H(2)SiW(12)O(40))] (6), and [(n-butyl)(4)N](2)[{Mo(DPP)(O)}(2)(HBW(12)O(40))] (7) under mild reaction conditions. The crystal structures of the complexes were determined by X-ray crystallography. In these three complexes, named Porphyrin Hamburgers, the POM binds to two Mo(V) centers of porphyrin units directly via coordination of two terminal oxo groups. In spite of the similarity of those POM's structures, those Porphyrin Hamburgers exhibit different coordination bond angles between POM and the Mo(V) center in the porphyrin: 5 and 7 show two different coordination bond angles in one molecule in contrast to 6, which exhibits only one coordination bond angle. The Porphyrin Hamburgers involve protonation of the POM moieties to adjust the charge balance, as confirmed by spectroscopic titration with bases. In the crystals, the Porphyrin Hamburgers form two-dimensional (2D) sheets in the ac plane based on π-π interactions among peripheral phenyl substituents. Stacking of the 2D sheets toward the b axis constructs a 3D layered structure involving channels running into the crystallographic [1 0 0] and [0 0 1] directions in the crystal to include solvent molecules of crystallization for 5-7, and also counter cations for 7. Three complexes were revealed to be stable enough to maintain their structures even in solutions to show molecular ion peaks in the MALDI-TOF-MS measurements. They also exhibited different electron paramagnetic resonance (EPR) signals because of the Mo(V) (S = 1/2, I = 0) centers, reflecting the difference in the crystal structures. In addition, these complexes showed reversible multistep redox processes as observed in their cyclic voltammograms in benzonitrile to demonstrate high stability throughout the redox reactions in solution.  相似文献   

13.
Reaction of in situ generated copper(II)-monosubstituted Keggin polyoxometalates and copper(II)-bipyridine-oxalate complexes in the corresponding alkaline acetate buffer led to the formation of hybrid metal organic-inorganic compounds K(2)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(H(2)O)(2)(mu-ox)}(2)].14H(2)O (1), K(14)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}](2)[SiW(11)O(39)Cu(H(2)O)].55H(2)O (2), (NH(4))(4)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}].10H(2)O (3), and Rb(4)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}].10H(2)O (4). Their structures have been established by single-crystal X-ray diffraction. The main structural feature of these compounds is the presence of copper(II)-monosubstituted alpha-Keggin polyoxoanions as inorganic building blocks, on which the mu-oxalatodicopper metalorganic blocks are supported. Compound 1contains the discrete hybrid polyanion [{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(H(2)O)(2)(mu-ox)}(2)](2)(-), whereas the polymeric hybrid polyanion [{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}(2)](n)(4)(n)(-) gives a monodimensional character to compounds 2-4. Magnetic and EPR results are discussed with respect to the crystal structure of the compounds. DFT calculations on both the [Cu(2)(bpy)(2)(H(2)O)(4)(mu-ox)](2+) cationic complex and the metalorganic blocks have been performed in order to determine the optimized geometry and the magnetic coupling constants, respectively.  相似文献   

14.
Hydrogen-bonded assemblies of the two-electron reduced mixed-valence Keggin clusters [PMo(12)O(40)](5-) and [SiMo(12)O(40)](6-) were obtained by the one-pot electron-transfer reactions between p-phenylenediamine (PPD) or 2,3,5,6-tetramethyl-PPD (TMPPD) (donors) and H(+)(3)[PMo(12)O(40)](3-) or H(+)(4)[SiMo(12)O(40)](4-) (acceptors) in CH(3)CN. The redox states of the [PMo(12)O(40)](5-) and [SiMo(12)O(40)](6-) clusters were confirmed by the redox titrations and electronic absorption measurements. In (HPPD(+))(3)(H(+))(2)[PMo(12)O(40)](5-)(CH(3)CN)(3-6) (1), the N-H ~ O hydrogen-bonded interactions between the monoprotonated HPPD(+) (or diprotonated H2PPD(2+)) and the [PMo(12)O(40)](5-) resulted in a windmill-like assembly and hydrophilic one-dimensional channels are formed with a cross-sectional area of 0.065 nm(2), and these are filled by the CH(3)CN molecules. Also, the CH(3)CN molecules in salt 1 were removed by immersing the single crystals of 1 into H(2)O, CH(3)OH, and C(2)H(5)OH solvents. In the compound, (HTMPPD(+))(6)[SiMo(12)O(40)](6-)(CH(3)CN)(6) (2), the N-H ~ O hydrogen-bonded interactions between the monoprotonated HTMPPD(+) molecules and the [SiMo(12)O(40)](6-) formed a "Saturn-ring"-like assembly. Each Saturn-ring was arranged into an hexagonally packed array via hydrogen-bonded and π-stacking interactions of HTMPPD(+), while the CH(3)CN solvent present in salt 2 are only found in the zero-dimensional isolated cavities.  相似文献   

15.
The synthesis and structure, as well as the chemical and electrochemical characterisation of two new nu(3)-octahedral bimetallic clusters with the general [Ni(44-x)M(x)(CO)(48)](6-) (M = Pd, x = 8; M = Pt, x = 9) formula is reported. The [Ni(35)Pt(9)(CO)(48)](6-) cluster was obtained in reasonable yields (56 % based on Pt) by reaction of [Ni(6)(CO)(12)](2-) with 1.1 equivalents of Pt(II) complexes, in ethyl acetate or THF as the solvent. The [Ni(36)Pd(8)(CO)(48)](6-) cluster was obtained from the related reaction with Pd(II) salts in THF, and was isolated only in low yields (5-10 % based on Pd), mainly because of insufficient differential solubility of its salts. The unit cell of the [NBu(4)](6)[Ni(35)Pt(9)(CO)(48)] salt contains a substitutionally Ni-Pt disordered [Ni(24)(Ni(14-x)Pt(x))Pt(6)(CO)(48)](6-) (x = 3) hexaanion. A combination of crystal and molecular disorder is necessary to explain the disordering observed for the Ni/Pt sites. The unit cell of the corresponding [Ni(36)Pd(8)(CO)(48)](6-) salt contains two independent [Ni(30)(Ni(8-x)Pd(x))Pd(6)(CO)(48)](6-) (x = 2) hexaanions. The two display similar substitutional Ni-Pd disorder, which probably arises only from crystal disorder. The structure of [Ni(36)Pd(8)(CO)(48)](6-) establishes the first similarity between the chemistry of Ni-Pd and Ni-Pt carbonyl clusters. A comparison of the chemical and electrochemical properties of [Ni(35)Pt(9)(CO)(48)](6-) with those of the related [Ni(38)Pt(6)(CO)(48)](6-) cluster shows that surface colouring of the latter with Pt atoms decreases redox as well as protonation propensity of the cluster. In contrast, substitution of all internal Pt and two surface Ni with Pd atoms preserves the protonation behaviour and is only detrimental with respect to its redox aptitude. A qualitative rationalisation of the different surface-site selectivity of Pt and Pd, based on distinctive interplays of M--M and M--CO bond energies, is suggested.  相似文献   

16.
The first known paramagnetic, tetrahedral cyanide complex, [Mn(II)(CN)(4)](2)(-), is formed by the photoinduced decomposition of [Mn(IV)(CN)(6)](2)(-) in nonaqueous solutions or by thermal decomposition in the solid state. In acetonitrile or dichloromethane, photoexcitation into the ligand-to-metal charge transfer band (lambda(max) = 25 700 cm(-1), epsilon = 3700 cm(-1) M(-1)) causes the homolytic cleavage of cyanide radicals and reduction of Mn(IV). Free cyanide in dichloromethane leads to the isolation of polycyanide oligomers such as [C(12)N(12)](2)(-) and [C(4)N(4)](-), which was crystallographically characterized as the PPN(+) salt C(40)H(30)N(5)P(2): monoclinic space group = I2/a, a = 18.6314(2) A, b = 9.1926(1) A, c = 20.8006(1), beta =106.176(2) degrees, Z = 4]. In the solid state Mn(IV)-CN bond homolysis is thermally activated above 122 degrees C, according to differential scanning calorimetry measurements, leading to the reductive elimination of cyanogen. The [Mn(II)(CN)(4)](2-) ion has a dynamic solution behavior, as evidenced by its concentration-dependent electronic and electron paramagnetic spectra, that can be attributed to aggregation of the coordinatively and electronically unsaturated (four-coordinate, 13-electron) metal center. Due to dynamics and lability of [Mn(II)(CN)(4)](2-) in solution, its reaction with divalent first-row transition metal cations leads to the formation of lattice compounds with both tetrahedral and square planar local coordination geometries of the metal ions and multiple structural and cyano-linkage isomers. alpha-Mn(II)[Mn(II)(CN)(4)] has an interpenetrating sphalerite- or diamond-like network structure with a unit cell parameter of a = 6.123 A (P43m space group) while a beta-phase of this material has a noninterpenetrating disordered lattice containing tetrahedral [Mn(II)(CN)(4)](2-). Linkage isomerization or cyanide abstraction during formation results in alpha-Mn(II)[Co(II)(CN)(4)] and Mn(II)[Ni(II)(CN)(4)] lattice compounds, both containing square planar tetracyanometalate centers. alpha-Mn(II)[Co(II)(CN)(4)] is irreversibly transformed to its beta-phase in the solid state by heating to 135 degrees C, which causes a geometric isomerization of [Co(II)(CN)(4)](2)(-) from square planar (nu(CN) = 2114 cm(-1), S = (1)/(2)) to tetrahedral (nu(CN) = 2158 cm(-1), S = (3)/(2)) as evidenced by infrared and magnetic susceptibility measurements. Mn(II)[Ni(II)(CN)(4)] is the only phase formed with Ni(II) due to the high thermodynamic stability of square planar [Ni(II)(CN)(4)](2)(-).  相似文献   

17.
We have synthesized the mono-ruthenium substituted Keggin-type silicotungstate [SiW(11)O(39)Ru(III)(H(2)O)](5-) (1a) by reaction of the mono-lacunary silicotungstate precursor [SiW(11)O(39)](8-) with Ru(acac)(3) under hydrothermal conditions and isolated as the caesium salt Cs(5)[SiW(11)O(39)Ru(III)(H(2)O)] (1). The DMSO-coordinated complex [SiW(11)O(39)Ru(III)(DMSO)](5-) (2a) was prepared by reaction of 1a with DMSO in aqueous solution at 353 K and isolated as the caesium-potassium mixed salt Cs(4.9)K(0.1)[SiW(11)O(39)Ru(III)(DMSO)] (2). Both compounds 1 and 2 were characterized by single-crystal X-ray structure analysis, powder X-ray structure analysis, UV-Vis spectroscopy, cyclic voltammetry, IR-spectroscopy and elemental analysis. 1 crystallized in the tetragonal space group P4(2)/ncm with a = 20.9299(4), c = 10.3603(4) Angstrom, Z = 4. The ruthenium atom in the Keggin unit could not be distinguished from the tungsten due to disorder. The structural analysis of 2 (monoclinic, P2(1)/c, a = 13.5850(4), b = 20.2764(7), c = 18.1326(4) Angstrom, beta = 90.8730(10) degrees , Z = 4) successfully revealed that the incorporated ruthenium atom is coordinated by DMSO through a Ru-S bond. Polyanion 2a represents the first mono-substituted Keggin ion in which the ruthenium center is not crystallographically disordered. UV-Vis spectroscopy combined with controlled potential electrolysis confirmed that the incorporated rutheniums in 1 and 2 have a valence state of +3. The IR spectra of both 1 and 2 were very similar. All these data indicate that 1 synthesized by reaction of the mono-lacunary silicotungstate K(8)[SiW(11)O(39)] with Ru(acac)(3) under hydrothermal conditions is truly the mono-ruthenium substituted Keggin-type silicotungstate.  相似文献   

18.
Six 3D architectures based on lanthanide-substituted polyoxometalosilicates, KLn[(H(2)O)(6)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 1, n = 42; Ce 2, n = 40), H[(H(2)O)(6)Nd](2)[(H(2)O)(7)Nd][(H(2)O)(4)NdSiW(11)O(39)][(H(2)O)(3)NdSiW(11)O(39)]·13H(2)O (3), H(2)K(2)[(Hpic)(H(2)O)(5)Ln](2)[(H(2)O)(4)LnSiW(11)O(39)](2)·nH(2)O (Ln = La 4, n = 18.5; Ce 5, n = 35; Nd 6, n = 36; Hpic = 4-picolinic acid), have been synthesized and characterized by elemental analysis, IR and UV-vis spectroscopy, TG analysis, powder X-ray diffraction and single crystal X-ray diffraction. Compounds 1 and 2 are isostructural, built up of lanthanide-substituted polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by Ln(3+) cations to form a 3D open framework with 1D channels. The polyoxoanion [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) consists of two α(1)-type mono-Ln-substituted Keggin anions. When Nd(3+) ion was used instead of La(3+) or Ce(3+) ions, compound 3 with a different structure was obtained, containing two kinds of polyoxoanions [{(H(2)O)(4)Nd(SiW(11)O(39))}(2)](10-) and [{(H(2)O)(3)Nd(SiW(11)O(39))}(2)](10-) which are connected together by Nd(3+) ions to yield a 3D framework. When 4-picolinic acid was added to the reaction system of 1-3, isostructural compounds 4-6 were obtained, constructed from the polyoxoanions [{(H(2)O)(4)Ln(SiW(11)O(39))}(2)](10-) linked by picolinate-chelated lanthanide centers to form a 3D channel framework. From a topological viewpoint, the 3D nets of 1, 2, 4, 5 and 6 exhibit a (3,6)-connected rutile topology, whereas the 3D structure of 3 possesses a rare (3,3,6,10)-connected topology. The magnetic properties of 2, 3, 5 and 6 have been studied by measuring their magnetic susceptibilities in the temperature range 2-300 K.  相似文献   

19.
Wang X  Hu H  Tian A  Lin H  Li J 《Inorganic chemistry》2010,49(22):10299-10306
Three metal-organic networks based on Keggin-type polyoxometalates (POMs) have been hydrothermally synthesized by tuning the spacer lengths of bis(tetrazole)-functionalized thioether ligands and structurally characterized: [Cu(4)(bmtm)(4)][SiW(12)O(40)]·2H(2)O (1), [Cu(4)(bmte)(3.5)][SiW(12)O(40)] (2), and [Cu(4)(bmtp)(4)][SiW(12)O(40)] (3) [bmtm = 1,1'-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)methane, bmte = 1,2-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)ethane, and bmtp = 1,5-bis(1-methyl-5-mercapto-1,2,3,4-tetrazole)pentane]. The spacer lengths and sulfhydryl of bis(tetrazole)-functionalized thioether ligands play important roles in the final framework formation, as shown by X-ray diffraction analysis. In compound 1, with the connection of a N,S bridge of bmtm, two kinds of binuclear Cu(I) units are formed and linked to construct a one-dimensional (1D) chain. The [SiW(12)O(40)](4-) (SiW(12)) cluster provides four terminal O atoms linking four binuclear units to generate a two-dimensional layer with (8(3))(2)(8(5)·10) topology. In compound 2, centrosymmetric octameric moieties composed of two equivalent tetrameric Cu(I) units are bridged by bmte ligands to form a 1D chain. The SiW(12) clusters show an unusual (2,8)-connected mode to connect with the 1D chain and construct a four-connected three-dimensional (3D) network with 5(3)·6(2)·7 topology. Compound 3 exhibits a rare 3D host framework with a type of large cavity and two types of small windows. The SiW(12) clusters as templates are strongly cemented into the large cavities and completely encircled by small windows. Furthermore, the compound 2 bulk-modified carbon-paste electrode (2-CPE) displays good electrocatalytic activity toward the reduction of nitrite.  相似文献   

20.
以Keggin型钨硅酸H_4[SiW_(12)O_(40)]·24H_2O和MN~(2+)为原料,4,4′-联吡啶(4,4′-bipy)为有机前驱体,水和二甲基亚砜(DMSO)为混合溶剂,在水热条件下,4,4′-bipy发生N-甲基化,并与DMSO共同修饰[SiW_(12)O_(40)]~(4-)阴离子,形成了1个钨硅酸盐基无机-有机杂化化合物(CH_3)_2bipy)((CH_3)_2SOH)_2[SiW_(12)O_(40)].通过元素分析、红外光谱(IR)、热重(TG)及X-射线单晶衍射分析对该化合物进行了表征,初步探讨了该化合物的形成条件,并研究了其在水溶液中的电化学性质及其对H_2O_2还原的电催化活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号