首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
This paper describes a procedure for building the dynamic stiffness matrix of two-dimensional elements with free edge boundary conditions. The dynamic stiffness matrix is the basis of the continuous element method. Then, the formulation is used to build a Kirchhoff rectangular plate element. Gorman's method of boundary condition decomposition and Levy's series are used to obtain the strong solution of the elementary problem. A symbolic computation software partially performs the construction of the dynamic stiffness matrix from this solution. The performances of the element are evaluated from comparisons with harmonic responses of plates obtained by the finite element method.  相似文献   

2.
The purpose of this study was to develop a theoretical model for the flow-induced vibration of viscoelastically supported rectangular plates. In particular, the influence of the dynamic mechanical properties of the elements supporting the plate was investigated. The case of a homogeneous rectangular plate supported along all four edges by a complex viscoelastic element was treated. The Rayleigh-Ritz method was used applying beam functions as the trial functions. This approach ensured a fast convergence rate, which is advantageous for vibration analysis of high order modes. The flow-induced vibration of the plate was calculated using the Corcos model for the surface pressure loading. The results suggest that there is an optimal support stiffness that minimizes the flow-induced vibration response of the plate.  相似文献   

3.
The proposed numerical analysis of moderately thick plates subject to rather general boundary conditions is based on the direct boundary element method (BEM) in the frequency domain. First order shear-deformation theory of the Reissner-Mindlin-type is considered. A step forward in efficiency is obtained when the force and double force with moment Green's functions of the rectangular simply supported base plate of the same stiffness are applied. The time-reduced equations of hard-hinged polygonal plates correspond to those of a background Kirchhoff plate having frequency-dependent effective parameters like mass, lateral and in-plane load, and is further forced by imposed fictitious curvatures. This analogy holds even for the quasi-static shear forces and bending moments, i.e., when inertia effects become negligible. Furthermore, it can be shown that, in the static case, these stress resultants for certain groups of Reissner-type shear-deformable plates are identical with those resulting from the Kirchhoff theory in the background. Since this analogy is restricted to hard-hinged supports of straight edges, it is necessary to apply, e.g., the direct BEM of analysis to the plate of general planform and boundary conditions. The main effort is thus to study the properties and effective representations of the Green's dyadics and their singularities, in view of their proper integration. Similarly as for Kirchhoff plates, the strong singularity of the infinite domain is identified for the rectangular plate and subject to indirect integration. The resulting direct BEM proves to be efficient, robust and, in connection with proper pre- and post-processors, becomes an effective tool of engineering analyses just within the frequency limits given by the first two of the three spectral branches.  相似文献   

4.
A Ritz vector approach is used to develop new formulations for evaluating the static and the dynamic characteristics of rectangular plates with edge beams. Unlike previous studies in which stiffness coefficients with specified distributions along the plate edges are used to represent the effect of edge restraints, the effect of elastic edge restraints is accounted for by including appropriate integrals for edge beams in the expressions for total kinetic and potential energies in a Rayleigh-Ritz approach. The effect of various types of boundary conditions at the beam ends is accounted for by considering the corresponding Ritz vectors. The contribution of beam mass to the total kinetic energy is also considered in the proposed approach. This effect has often been neglected in the previous studies but can be significant in some applications. The results obtained from the application of the proposed approach to a variety of examples are compared with the corresponding results obtained from the finite element analysis.  相似文献   

5.
This paper discusses sound radiation from a baffled rectangular plate with each of its edges arbitrarily supported in the form of elastic restraints. The plate displacement function is universally expressed as a 2-D Fourier cosine series supplemented by several 1-D series. The unknown Fourier expansion coefficients are then determined by using the Rayleigh-Ritz procedure. Once the vibration field is solved, the displacement function is further simplified to a single standard 2-D Fourier cosine series in the subsequent acoustic analysis. Thus, the sound radiation from a rectangular plate can always be obtained from the radiation resistance matrix for an invariant set of cosine functions, regardless of its actual dimensions and boundary conditions. Further, this radiation resistance matrix, unlike the traditional ones for modal functions, only needs to be calculated once for all plates with the same aspect ratio. In order to determine the radiation resistance matrix effectively, an analytical formula is derived in the form of a power series of the non-dimensional acoustic wavenumber; the formula is mathematically valid and accurate for any wavenumber. Several numerical examples are presented to validate the formulations and show the effect of the boundary conditions on the radiation behavior of planar sources.  相似文献   

6.
In this paper, the free vibrations of rectangular Mindlin plates with variable thickness in one or two directions are investigated. The thickness variation of the plate is continuous and can be represented by a power function of the rectangular co-ordinates. A wide range of tapered rectangular plates can be described by giving various index values to the power function. Two sets of new admissible functions are developed, respectively, to approximate the flexural displacement and the angle of rotation due to bending of the plate. The eigenfrequency equation is obtained by using the Rayleigh-Ritz method. The complete solutions of displacement and angle of rotation due to bending for a tapered Timoshenko beam (a strip taken from the tapered Mindlin plate in some direction) under a Taylor series of static load have been derived, which are used as the admissible functions of the rectangular Mindlin plates with taper thickness in one or two directions. Unlike conventional admissible functions which are independent of the thickness variation of the plate, the static Timoshenko beam functions presented in this paper are closely connected with the thickness variation of the plate so that higher accuracy and more rapid convergence can be expected. Some numerical results are furnished for both truncated Mindlin plates and sharp-ended Mindlin plates. On the basis of convergence study and comparison with available results in literature, it is shown that the first few eigenfrequencies can be obtained with quite satisfactory accuracy by using only a small number of terms of the static Timoshenko beam functions.  相似文献   

7.
变厚度弹性圆薄板问题   总被引:4,自引:0,他引:4       下载免费PDF全文
叶开沅 《物理学报》1955,11(3):207-218
一.引言 变厚度的圆薄板常常在机器零件的设计中遇到,例如蒸汽涡输机和活塞的膜片便是。 用平板小挠度理论求解变厚度平板问题并不是容易的事,因此到目前为止,这类的实际问题已解决的为数并不多。  相似文献   

8.
This study provides two non-contact optical techniques to investigate the transverse vibration characteristics of piezoceramic rectangular plates in resonance. These methods, including the amplitude-fluctuation electronic speckle pattern interferometry (AF-ESPI) and laser Doppler vibrometer (LDV), are full-field measurement for AF-ESPI and point-wise displacement measurement for LDV, respectively. The edges of these piezoceramic rectangular plates may either be fixed or free. Both resonant frequencies and mode shapes of vibrating piezoceramic plates can be obtained simultaneously by AF-ESPI. Excellent quality of the interferometric fringe patterns for the mode shapes is obtained. In the LDV system, a built-in dynamic signal analyzer (DSA) composed of DSA software and a plug-in waveform generator board can provide the piezoceramic plates with the swept-sine excitation signal, whose gain at corresponding frequencies is analyzed by the DSA software. The peaks appeared in the frequency response curve are resonant frequencies. In addition to these optical methods, the numerical computation based on the finite element analysis is used to verify the experimental results. Good agreements of the mode shapes and resonant frequencies are obtained for experimental and numerical results.  相似文献   

9.
10.
The fundamental frequency of vibration of a plate carrying concentrated masses and with internal elastic supports is determined. The case of an orthotropic, rectangular plate elastically restrained against rotation along the four edges is tackled first by using simple polynomial approximations and the Galerkin method. Then, vibrations of clamped and simply supported isotropic plates of regular polygonal shape are studied by using the conformal mapping technique coupled with the variational method. Finally the case of a circular plate elastically restrained against translation and rotation is considered.  相似文献   

11.
Y.Y. Lee 《Applied Acoustics》2002,63(11):1157-1175
The nonlinear natural frequency of a rectangular box, which consists of one flexible plate and five rigid plates, is studied in this paper. The flexible plate is assumed to vibrate like a simple piston. The behavior of the structural-acoustic coupling between the flexible plate and the air cavity is analyzed by using the proposed finite element modal method. The system finite element equation is reduced and expressed in terms of the modal coordinates with small degrees of freedom by using the proposed reduction method. The system nonlinear stiffness matrix representing the large amplitude vibration can be transformed to be a constant modal matrix. The natural frequencies are determined by using the harmonic balance method to solve the eigenvalue equations of the structural-acoustic system. The effect of the cavity depth on the natural frequencies and convergence studies are discussed in detail.  相似文献   

12.
This paper provides a method for obtaining the harmonic Green's function for flexural waves in semi-infinite plates with arbitrary boundary conditions and a high frequency approximation of the Green's function in the case of convex polygonal plates, by using a generalised image source method. The classical image source method consists in describing the response of a point-driven polygonal plate as a superposition of contributions from the original source and virtual sources located outside of the plate, which represent successive reflections on the boundaries. The proposed approach extends the image source method to plates including boundaries that induce coupling between propagating and evanescent components of the field and on which reflection depends on the angle of incidence. This is achieved by writing the original source as a Fourier transform representing a continuous sum of propagating and evanescent plane waves incident on the boundaries. Thus, the image source contributions arise as continuous sums of reflected plane waves. For semi-infinite plates, the exact Green's function is obtained for an arbitrary set of boundary conditions. For polygonal plates, a high-frequency approximation of the Green's function is obtained by neglecting evanescent waves for the second and subsequent reflections on the edges. The method is compared to exact and finite element solutions and evaluated in terms of its frequency range of applicability.  相似文献   

13.
This paper presents exact solutions for vibration of rectangular plates with an internal line hinge. The rectangular plate is simply supported on two parallel edges and the remaining two edges may take any combination of support conditions. The line hinge is perpendicular to the two simply supported parallel edges. The Lévy type solution method and the state-space technique are employed in connection with the first order shear deformation plate theory (FSDT) to study natural vibration of rectangular plates with an internal line hinge. In particular, exact vibration frequencies are obtained for rectangular plates of different aspect ratios and edge support conditions. The influence of the internal line hinge on the vibration behavior of rectangular plates is studied.  相似文献   

14.
Dynamic response analysis is presented for a Reissner–Mindlin plate with four free edges resting on a tensionless elastic foundation of the Winkler-type and Pasternak-type. The mechanical loads consist of transverse partially distributed impulsive loads and in-plane static edge loads while the temperature field is assumed to exhibit a linear variation through the thickness of the plate. The material properties are assumed to be independent of temperature. The two cases of initially compressed plates and of initially heated plates are considered. The formulations are based on Reissner–Mindlin first-order shear deformation plate theory and include the plate–foundation interaction and thermal effects. A set of admissible functions is developed for the dynamic response analysis of moderately thick plates with four free edges. The Galerkin method, the Gauss–Legendre quadrature procedure and the Runge–Kutta technique are employed in conjunction with this set of admissible functions to determine the deflection-time and bending moment–time curves, as well as shape mode curves. An iterative scheme is developed to obtain numerical results without using any assumption on the shape of the contact region. The numerical illustrations concern moderately thick plates with four free edges resting on tensionless elastic foundations of the Winkler-type and Pasternak-type, from which results for conventional elastic foundations are obtained as comparators. The results confirm that the plate will have stronger dynamic behavior than its counterpart when it is supported by a tensionless elastic foundation.  相似文献   

15.
A solution, based on a one-term mode shape, for the large amplitude vibrations of a rectangular orthotropic plate, simply supported on all edges or clamped on all edges for movable and immovable in-plane conditions, is found by using an averaging technique that helps to satisfy the in-plane boundary conditions. This averaging technique for satisfying the immovable in-plane conditions can be used to resolve many anisotropic and skew plate problems where otherwise, when a stress function is used, the integration of the u and v equations becomes difficult, if not impossible. The results obtained herein are compared with those available in the literature for the isotropic case and excellent agreement is found. Results available for the one-term mode shape solutions of these problems are compared and the non-linear effect is presented as functions of aspect ratio and of the orthotropic elastic constants of the plate. The results are further compared with those based on the Berger method and the detailed comparative studies show that the use of the Berger approximation for large deflection static and dynamic problems and its extension to anisotropic plates, skew plates, etc., can lead to quite inaccurate results.  相似文献   

16.
An assumed stress distribution is used to derive the stiffness matrix for a rectangular cylindrical shell element. A numerical method is given for selecting the required number of terms in the stress assumption. A selection of various static and dynamic results are presented and compared with results obtained by exact theory and other finite elements.  相似文献   

17.
This paper presents three-dimensional free vibration analysis of isotropic rectangular plates with any thicknesses and arbitrary boundary conditions using the B-spline Ritz method based on the theory of elasticity. The proposed method is formulated by the Ritz procedure with a triplicate series of B-spline functions as amplitude displacement components. The geometric boundary conditions are numerically satisfied by the method of artificial spring. To demonstrate the convergence and accuracy of the present method, several examples with various boundary conditions are solved, and the results are compared with other published solutions by exact and other numerical methods based on the theory of elasticity and various plate theories. Rapid, stable convergences as well as high accuracy are obtained by the present method. The effects of geometric parameters on the vibrational behavior of cantilevered rectangular plates are also investigated. The results reported here may serve as benchmark data for finite element solutions and future developments in numerical methods.  相似文献   

18.
This study is an analytical investigation of free flexural large amplitude vibrations of orthotropic rectangular plates with all-clamped and all-simply supported stress-free edges. The dynamic von Karman-type equations of the plate are used in the analysis. A solution satisfying the prescribed boundary conditions is expressed in the form of double series with coefficients being functions of time. The model equations are solved by expanding the time-dependent deflection coefficients into Fourier cosine series. As obtained by taking the first sixteen terms in the double series and the first two terms in the time series, numerical results are presented for non-linear frequencies of various modes of glass-epoxy, boron-epoxy and graphite-epoxy plates. The analysis shows that, for large values of the amplitude, the effect of coupling of vibrating modes on the non-linear frequency of the fundamental mode is significant for orthotropic plates, especially for high-modulus composite plates.  相似文献   

19.
In this study, a method of analysis is presented for investigating the effects of elastic foundation and fluid on the dynamic response characteristics (natural frequencies and associated mode shapes) of rectangular Kirchhoff plates. For the interaction of the Kirchhoff plate–Pasternak foundation, a mixed-type finite element formulation is employed by using the Gâteaux differential. The plate finite element adopted in this study is quadrilateral and isoparametric having four corner nodes, and at each node four degrees of freedom are present (one transverse displacement, two bending moments and one torsional moment). Therefore, a total number of 16 degrees-of-freedom are assigned to each element. A consistent mass formulation is used for the eigenvalue solution in the mixed finite element analysis. The plate structure considered is assumed clamped or simply supported along its edges and resting on a Pasternak foundation. Furthermore, the plate is fully or partially in contact with fresh water on its one side. For the calculation of the fluid–structure interaction effects (generalized fluid–structure interaction forces), a boundary element method is adopted together with the method of images in order to impose an appropriate boundary condition on the fluid's free surface. It is assumed that the fluid is ideal, i.e., inviscid, incompressible, and its motion is irrotational. It is also assumed that the plate–elastic foundation system vibrates in its in vacuo eigenmodes when it is in contact with fluid, and that each mode gives rise to a corresponding surface pressure distribution on the wetted surface of the structure. At the fluid–structure interface, continuity considerations require that the normal velocity of the fluid is equal to that of the structure. The normal velocities on the wetted surface of the structure are expressed in terms of the modal structural displacements, obtained from the finite element analysis. By using the boundary integral equation method the fluid pressure is eliminated from the problem, and the fluid–structure interaction forces are calculated in terms of the generalized hydrodynamic added mass coefficients (due to the inertial effect of fluid). To asses the influences of the elastic foundation and fluid on the dynamic behavior of the plate structure, the natural frequencies and associated mode shapes are presented. Furthermore, the influence of the submerging depth on the dynamic behavior is also investigated.  相似文献   

20.
This paper is concerned with the determination of exact buckling loads and vibration frequencies of multi-stepped rectangular plates based on the classical thin (Kirchhoff) plate theory. The plate is assumed to have two opposite edges simply supported while the other two edges can take any combination of free, simply supported and clamped conditions. The proposed analytical method for solution involves the Levy method and the state-space technique. By using this analytical method, exact buckling and vibration solutions are obtained for rectangular plates having one- and two-step thickness variations. These exact solutions are extremely useful as benchmark values for researchers developing numerical techniques and software for analyzing non-uniform thickness plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号