首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
P Mukherjee 《Pramana》2001,57(1):5-9
Experimental studies of nuclear excitations have been an important subject from the earliest days when the institute was established. The construction of 4 MeV proton cyclotron was mainly aimed to achieve this goal. Early experiments in nuclear spectroscopy were done with radioactive nuclei with the help of beta and gamma ray spectrometers. Small NaI(Tl) detectors were used for gamma-gamma coincidence, angular correlation and life time measurements. The excited states nuclear magnetic moments were measured in perturbed gamma-gamma angular correlation experiments. A high transmission magnetic beta ray spectrometer was used to measure internal conversion coefficients and beta-gamma coincidence studies. A large number of significant contributions were made during 1950–59 using these facilities. Proton beam in the cyclotron was made available in the late 1950’s and together with 14 MeV neutrons obtained from a C-W generator a large number of short-lived nuclei were investigated during 1960’s and 1970’s. The introduction of high resolution Ge gamma detectors and the improved electronics helped to extend the spectroscopic work which include on-line (p 7 p′γ) and (p 7 ) reaction studies. Nuclear spectroscopic studies entered a new phase in the 1980’s with the availability of 40–80 MeV alpha beam from the variable energy cyclotron at VECC, Calcutta. A number of experimental groups were formed in the institute to study nuclear level schemes with (α 7 xnγ) reactions. Initially only two unsuppressed Ge detectors were used for coincidence studies. Later in 1989 five Ge detectors with a large six segmented NaI(Tl) multiplicitysum detector system were successfully used to select various channels in (α 7 xnγ) reactions. From 1990 to date a variety of medium energy heavy ions were made available from the BARC-TIFR Pelletron and the Nuclear Science Centre Pelletron. The state of the art gamma detector arrays in these centres enabled the Saha Institute groups to undertake more sophisticated experiments. Front line nuclear spectroscopy works are now being done and new informations are obtained for a large number of nuclei over a wide mass range. Currently Saha Institute is building a multi-element gamma heavy ion neutron array detector (MEGHNAD), which will have six high efficiency clover Ge detector together with charged particle ball and other accessories. The system is expected to be usable in 2002 and will be used in experiments using high energy heavy ions from VECC.  相似文献   

2.
Two-dimensional (2D) pillar arrays with submicrometer to micrometer repetitions have been fabricated from hybrid organic–inorganic material by mask lithography or multi-beam interference lithography. The type of array structure depends on structural parameters such as the pillar height, diameter and distance between neighboring pillars. Two kinds of periodic arrays, 2D arrays and ‘top-gathering’ arrays, can be obtained by controlling the structural parameters. In the top-gathering arrays, the pillars are gathered at the top by means of self-organization, and ‘top-gathering’ units composed of four pillars can be formed. PACS 68.35.Gy; 81.20.Fw; 82.50.-m  相似文献   

3.
We present the results from our search for gamma ray bursts of high energy with the Andyrchy air shower array of the Baksan Neutrino Observatory of the Russian Academy of Sciences’ Institute for Nuclear Research using experimental data for the period 1996–2006 (live time, 2290 days). These data were recorded by the array in the mode of detecting single-particle components of cosmic rays.  相似文献   

4.
Nuclear spectroscopy using radioactive isotope beams requires dedicated set-ups. State-of-the-art Ge arrays recently started to provide valuable γ spectroscopic data. At the SIS/FRS facility at GSI exotic beams at relativistic energies were employed for Coulomb excitation and secondary fragmentation experiments with the fast beam RISING set-up. Shell evolution far off stability, pn-pairing, symmetries and nuclear shapes were studied in nuclei ranging from 36Ca to 136Nd. The observation of a I = 27 ħ state demonstrated that high spin states can be reached in massive fragmentation reactions. This and the large sensitivity of relativistic in-beam experiments opens a rich ground for advanced nuclear structure studies. Combining RISING with AGATA γ-tracking detectors and improved particle detection is planned for future experimental investigations.  相似文献   

5.
First results are reported from a major new initiative of experiments, which focus on nuclear structure studies at extreme isospin values by means of isomer spectroscopy. The experiments represent the first part of the so-called stopped-beam campaign within the Rare ISotope INvestigations at GSI (Rising) project. Time-correlated γ decays from individually identified nuclear species have been measured, allowing the clean identification of isomeric decays in a wide range of exotic nuclei both at the proton drip-line and in heavy, neutron-rich systems. An overview of the experimental technique will be given, together with the performance of the new germanium detector array and future research plans for the collaboration.  相似文献   

6.
Nearly-spherical nuclei in three mass regions have recently been observed to exhibit rotational-like features. We have identified almost 80 such bands; largest number (43) lie in the lead region. Most of these bands are assigned oblate multi-quasiparticle configurations. Their interpretation in terms of ‘magnetic rotation’ does not allow for signature splitting in these bands. We have however found signature splitting as well as signature inversion in many bands. We apply the two-quasiparticle plus rotor model to understand the occurrence of signature splitting vis-a-vis the role of ‘shears mechanism’ in these bands.  相似文献   

7.
P Banerjee 《Pramana》2001,57(1):41-56
In-beam gamma-ray spectroscopy, carried out at the Saha Institute of Nuclear Physics in the recent past, using heavy-ion projectiles from the pelletron accelerator centres in the country and multi-detector arrays have yielded significant data on the structure of a large number of nuclei spanning different mass regions. The experiments included the study of two-fold γγ-coincidence events for establishing decay schemes, directional correlation of oriented nuclei (DCO) for help in spin assignments and Doppler shift attenuation for lifetime information. The studies have led to the observation of rotational sequences of states in nuclei near closed shell in the mass A=110 region, vibrational spectra in nuclei with A ∼ 60, interplay between single-particle and collective modes of excitation in the doubly-odd bromine isotopes, decoupled bands with large quadrupole deformation in 77Br, shape transition with rotational frequency within a band in 135Pm and octupole collectivity in 153Eu. Particle-rotor-model and cranked-shell-model calculations have been carried out to provide an understanding of the underlying nuclear structure.  相似文献   

8.
The ensemble of experimental data on the 2830 nuclides which have been observed since the beginning of Nuclear Physics are being evaluated, according to their nature, by different methods and by different groups. The two ‘horizontal’ evaluations in which I am involved: the Atomic Mass Evaluation AME and the NUBASE evaluation belong to the class of ‘static’ nuclear data. In this tutorial lecture I will explain and discuss in detail the philosophy, the strategies and the procedures used in the evaluation of atomic masses. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Quantum theory may be formulated using Hilbert spaces over any of the three associative normed division algebras: the real numbers, the complex numbers and the quaternions. Indeed, these three choices appear naturally in a number of axiomatic approaches. However, there are internal problems with real or quaternionic quantum theory. Here we argue that these problems can be resolved if we treat real, complex and quaternionic quantum theory as part of a unified structure. Dyson called this structure the ‘three-fold way’. It is perhaps easiest to see it in the study of irreducible unitary representations of groups on complex Hilbert spaces. These representations come in three kinds: those that are not isomorphic to their own dual (the truly ‘complex’ representations), those that are self-dual thanks to a symmetric bilinear pairing (which are ‘real’, in that they are the complexifications of representations on real Hilbert spaces), and those that are self-dual thanks to an antisymmetric bilinear pairing (which are ‘quaternionic’, in that they are the underlying complex representations of representations on quaternionic Hilbert spaces). This three-fold classification sheds light on the physics of time reversal symmetry, and it already plays an important role in particle physics. More generally, Hilbert spaces of any one of the three kinds—real, complex and quaternionic—can be seen as Hilbert spaces of the other kinds, equipped with extra structure.  相似文献   

10.
Tarun Souradeep 《Pramana》2006,67(4):699-710
Measurements of CMB anisotropy and, more recently, polarization have played a very important role in allowing precise determination of various parameters of the ‘standard’ cosmological model. The expectation of the paradigm of inflation and the generic prediction of the simplest realization of inflationary scenario in the early Universe have also been established — ‘acausally’ correlated initial perturbations in a flat, statistically isotropic Universe, adiabatic nature of primordial density perturbations. Direct evidence for gravitational instability mechanism for structure formation from primordial perturbations has been established. In the next decade, future experiments promise to strengthen these deductions and uncover the remaining crucial signature of inflation — the primordial gravitational wave background.  相似文献   

11.
Several large relational databases (DBs) containing various atomic nucleus parameters and nuclear reaction features were produced at the Centre for Photonuclear Experiments Data (Centr Dannyh Fotoyadernykh Eksperimentov (CDFE)) of the Skobeltsyn Institute of Nuclear Physics, Moscow State University). The sources are numerical data founds maintained by International Nuclear Data Centers Network of the International Atomic Energy Agency (IAEA) and produced by CDFE. The original CDFE product is the electronic “Chart of Quadrupole Nuclear Deformations” which includes ∼2000 sets of data on nuclei quadrupole moments Q and quadrupole deformation parameters β2 for ∼1500 nuclei. At last time, in the frame of joint research with the Joint Institute for Nuclear Research (JINR) that electronic Chart was supplemented with the data on nuclear mean-root-square (MRS) charge radii (∼900 isotopes of 90 elements (Z = 1–96, N = 0–152)) and therefore transformed into the “Chart of Nucleus Shape and Size Parameters”—complete collection of data under discussion. New Chart allows one to investigate the isotopic and isotonic behavior of nuclei quadrupole moments, parameters of quadrupole deformation and charge radii, and study the R(Z, N) surface structure and R(A) dependence of the fine structure. Original Russian Text ? I.N. Boboshin, V.V. Varlamov, Yu.P. Gangrsky, B.S. Ishkhanov, S.Yu. Komarov, K.P. Marinova, 2009, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2009, Vol. 73, No. 6, pp. 857–862.  相似文献   

12.
13.
Subhendra Mohanty 《Pramana》1998,51(1-2):229-237
I summarize some astrophysical phenomenon like gamma ray bursters, astrophysical proof of the existence of blackholes, Active galactic nuclei — as high energy neutrino sources, and some unsolved issues in supernova. I touch on the aspects where novel particle properties (like neutrino mass and magnetic moment) are invoked to understand the astronomical observations.  相似文献   

14.
Nuclear masses and binding energies are an important input for nuclear models, constituting strong constraints far from the β-stability valley. During the last decade, new experimental techniques for the production of exotic nuclei and the measurement of their mass were developed. The present paper gives an overview of these techniques. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
In this paper, we have studied field emission properties of highly dense arrays of multi-walled carbon nanotubes (CNTs) used as cathodes in diode-type field emission devices with a phosphor screen. For the high-density CNT emitters it is demonstrated that the emission sites are located on the CNT-cathode edges, which is direct experimental evidence of the ‘edge effect’. The results of computer simulations (using ‘ANSYS Electromagnetic’ software) are presented to confirm the experimental data and to analyze the effect of patterning on the electric field distribution for high-density CNT arrays. It is shown that selective-area removal of nanotubes in the arrays leads to the formation of additional edges characterized by the high field enhancement factor and enhanced emission from the CNT cathodes. In addition, scanning probe microscopy techniques are employed to examine surface properties of the high-density CNT arrays. For CNT arrays of ‘short’ nanotubes, the work function distribution over the sample surface is detected using a scanning Kelvin microscopy method.  相似文献   

16.
Manuel Drees 《Pramana》2004,62(2):207-218
The origin of cosmic ray events withE ≳ 1011 GeV remains mysterious. In this talk I briefly summarize several proposed particle physics explanations: a breakdown of Lorentz invariance, the ‘Z-burst’ scenario, new hadrons with masses of several GeV as primaries, and magnetic monopoles with mass below 1010 GeV as primaries. I then describe in a little more detail the idea that these events are due to the decays of very massive, long-lived exotic particles.  相似文献   

17.
The energy spectrum of cosmic rays exhibits power-like behavior with a very characteristic ‘knee’ structure. We consider a possibility that such a spectrum could be generated by some specific nonstatistical temperature fluctuations in the source of cosmic rays with the ‘knee’ structure reflecting an abrupt change of the pattern of such fluctuations. This would result in a generalized nonextensive statistical model for the production of cosmic rays. The possible physical mechanisms leading to these effects are discussed together with the resulting chemical composition of the cosmic rays, which follows the experimentally observed abundance of nuclei.  相似文献   

18.
Low-energy structure of the dark-matter detector nuclei 71Ga, 73Ge and 127I has been studied by using the nuclear shell model. The calculations have been done in realistic model spaces by using renormalized microscopic two-body interactions. The resulting ground states have been used to calculate theoretical predictions for detection rates of the lightest supersymmetric particle (LSP) in experiments studying elastic scattering of the LSP’s from atomic nuclei. Presented by T.S. Kosmas at the Workshop on calculation of double-beta-decay matrix elements (MEDEX’05), Corfu, Greece, September 26–29, 2005.  相似文献   

19.
Hybrid recoil mass analyzer (HYRA) is a unique, dual-mode spectrometer designed to carry out nuclear reaction and structure studies in heavy and medium-mass nuclei using gas-filled and vacuum modes, respectively and has the potential to address newer domains in nuclear physics accessible using high energy, heavy-ion beams from superconducting LINAC accelerator (being commissioned) and ECR-based high current injector system (planned) at IUAC. The first stage of HYRA is operational and initial experiments have been carried out using gas-filled mode for the detection of heavy evaporation residues and heavy quasielastic recoils in the direction of primary beam. Excellent primary beam rejection and transmission efficiency (comparable with other gas-filled separators) have been achieved using a smaller focal plane detection system. There are plans to couple HYRA to other detector arrays such as Indian national gamma array (INGA) and 4π spin spectrometer for ER tagged spectroscopic/spin distribution studies and for focal plane decay measurements.  相似文献   

20.
The Large High Altitude Air Shower Observatory(LHAASO) is a composite cosmic ray observatory consisting of three detector arrays: kilometer square array(KM2 A), which includes the electromagnetic detector array and muon detector array, water Cherenkov detector array(WCDA) and wide field-of-view Cherenkov telescope array(WFCTA). One of the main scientific objectives of LHAASO is to precisely measure the cosmic rays energy spectrum of individual components from 10~(14) eV to 10~(18) eV. The hybrid observation will be employed by the LHAASO experiment, in which the lateral and longitudinal distributions of extensive air shower can be observed simultaneously. Thus, many kinds of parameters can be used for primary nuclei identification. In this paper, high purity cosmic ray simulation samples of the light nuclei component are obtained using multi-variable analysis. The apertures of 1/4 LHAASO array for pure proton and mixed proton and helium(HHe) samples are 900 m~2 Sr and1800 m~2 Sr, respectively. Prospect of obtaining proton and HHe spectra from 100 TeV to 4 PeV is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号