首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Summary  The Gibbs sampler, being a popular routine amongst Markov chain Monte Carlo sampling methodologies, has revolutionized the application of Monte Carlo methods in statistical computing practice. The performance of the Gibbs sampler relies heavily on the choice of sweep strategy, that is, the means by which the components or blocks of the random vector X of interest are visited and updated. We develop an automated, adaptive algorithm for implementing the optimal sweep strategy as the Gibbs sampler traverses the sample space. The decision rules through which this strategy is chosen are based on convergence properties of the induced chain and precision of statistical inferences drawn from the generated Monte Carlo samples. As part of the development, we analytically derive closed form expressions for the decision criteria of interest and present computationally feasible implementations of the adaptive random scan Gibbs sampler via a Gaussian approximation to the target distribution. We illustrate the results and algorithms presented by using the adaptive random scan Gibbs sampler developed to sample multivariate Gaussian target distributions, and screening test and image data. Research by RL and ZY supported in part by a US National Science Foundation FRG grant 0139948 and a grant from Lawrence Livermore National Laboratory, Livermore, California, USA.  相似文献   

2.
Markov chain Monte Carlo (MCMC) methods for Bayesian computation are mostly used when the dominating measure is the Lebesgue measure, the counting measure, or a product of these. Many Bayesian problems give rise to distributions that are not dominated by the Lebesgue measure or the counting measure alone. In this article we introduce a simple framework for using MCMC algorithms in Bayesian computation with mixtures of mutually singular distributions. The idea is to find a common dominating measure that allows the use of traditional Metropolis-Hastings algorithms. In particular, using our formulation, the Gibbs sampler can be used whenever the full conditionals are available. We compare our formulation with the reversible jump approach and show that the two are closely related. We give results for three examples, involving testing a normal mean, variable selection in regression, and hypothesis testing for differential gene expression under multiple conditions. This allows us to compare the three methods considered: Metropolis-Hastings with mutually singular distributions, Gibbs sampler with mutually singular distributions, and reversible jump. In our examples, we found the Gibbs sampler to be more precise and to need considerably less computer time than the other methods. In addition, the full conditionals used in the Gibbs sampler can be used to further improve the estimates of the model posterior probabilities via Rao-Blackwellization, at no extra cost.  相似文献   

3.
利用M arkov cha in M on te C arlo技术对可分离的下三角双线性模型进行B ayes分析.由于参数联合后验密度的复杂性,我们导出了所有的条件后验分布,以便利用G ibbs抽样器方法抽取后验密度的样本.特别地,由于从模型的方向向量的后验分布中直接抽样是困难的,我们特别设计了一个M etropolis-H astings算法以解决该难题.我们用仿真的方法验证了所建议方法的有效性,并成功应用于分析实际数据.  相似文献   

4.
We describe adaptive Markov chain Monte Carlo (MCMC) methods for sampling posterior distributions arising from Bayesian variable selection problems. Point-mass mixture priors are commonly used in Bayesian variable selection problems in regression. However, for generalized linear and nonlinear models where the conditional densities cannot be obtained directly, the resulting mixture posterior may be difficult to sample using standard MCMC methods due to multimodality. We introduce an adaptive MCMC scheme that automatically tunes the parameters of a family of mixture proposal distributions during simulation. The resulting chain adapts to sample efficiently from multimodal target distributions. For variable selection problems point-mass components are included in the mixture, and the associated weights adapt to approximate marginal posterior variable inclusion probabilities, while the remaining components approximate the posterior over nonzero values. The resulting sampler transitions efficiently between models, performing parameter estimation and variable selection simultaneously. Ergodicity and convergence are guaranteed by limiting the adaptation based on recent theoretical results. The algorithm is demonstrated on a logistic regression model, a sparse kernel regression, and a random field model from statistical biophysics; in each case the adaptive algorithm dramatically outperforms traditional MH algorithms. Supplementary materials for this article are available online.  相似文献   

5.
Most work on conditionally specified distributions has focused on approaches that operate on the probability space, and the constraints on the probability space often make the study of their properties challenging. We propose decomposing both the joint and conditional discrete distributions into characterizing sets of canonical interactions, and we prove that certain interactions of a joint distribution are shared with its conditional distributions. This invariance opens the door for checking the compatibility between conditional distributions involving the same set of variables. We formulate necessary and sufficient conditions for the existence and uniqueness of discrete conditional models, and we show how a joint distribution can be easily computed from the pool of interactions collected from the conditional distributions. Hence, the methods can be used to calculate the exact distribution of a Gibbs sampler. Furthermore, issues such as how near compatibility can be reconciled are also discussed. Using mixed parametrization, we show that the proposed approach is based on the canonical parameters, while the conventional approaches are based on the mean parameters. Our advantage is partly due to the invariance that holds only for the canonical parameters.  相似文献   

6.
We consider fixed scan Gibbs and block Gibbs samplers for a Bayesian hierarchical random effects model with proper conjugate priors. A drift condition given in Meyn and Tweedie (1993, Chapter 15) is used to show that these Markov chains are geometrically ergodic. Showing that a Gibbs sampler is geometrically ergodic is the first step toward establishing central limit theorems, which can be used to approximate the error associated with Monte Carlo estimates of posterior quantities of interest. Thus, our results will be of practical interest to researchers using these Gibbs samplers for Bayesian data analysis.  相似文献   

7.
通过添加部分缺失寿命变量数据,得到了删失截断情形下失效率变点模型相对简单的似然函数.讨论了所添加缺失数据变量的概率分布和随机抽样方法.利用Monte Carlo EM算法对未知参数进行了迭代.结合Metropolis-Hastings算法对参数的满条件分布进行了Gibbs抽样,基于Gibbs样本对参数进行估计,详细介绍了MCMC方法的实施步骤.随机模拟试验的结果表明各参数Bayes估计的精度较高.  相似文献   

8.
The multivariate linear mixed model (MLMM) has become the most widely used tool for analyzing multi-outcome longitudinal data. Although it offers great flexibility for modeling the between- and within-subject correlation among multi-outcome repeated measures, the underlying normality assumption is vulnerable to potential atypical observations. We present a fully Bayesian approach to the multivariate t linear mixed model (MtLMM), which is a robust extension of MLMM with the random effects and errors jointly distributed as a multivariate t distribution. Owing to the introduction of too many hidden variables in the model, the conventional Markov chain Monte Carlo (MCMC) method may converge painfully slowly and thus fails to provide valid inference. To alleviate this problem, a computationally efficient inverse Bayes formulas (IBF) sampler coupled with the Gibbs scheme, called the IBF-Gibbs sampler, is developed and shown to be effective in drawing samples from the target distributions. The issues related to model determination and Bayesian predictive inference for future values are also investigated. The proposed methodologies are illustrated with a real example from an AIDS clinical trial and a careful simulation study.  相似文献   

9.
Abstract

The members of a set of conditional probability density functions are called compatible if there exists a joint probability density function that generates them. We generalize this concept by calling the conditionals functionally compatible if there exists a non-negative function that behaves like a joint density as far as generating the conditionals according to the probability calculus, but whose integral over the whole space is not necessarily finite. A necessary and sufficient condition for functional compatibility is given that provides a method of calculating this function, if it exists. A Markov transition function is then constructed using a set of functionally compatible conditional densities and it is shown, using the compatibility results, that the associated Markov chain is positive recurrent if and only if the conditionals are compatible. A Gibbs Markov chain, constructed via “Gibbs conditionals” from a hierarchical model with an improper posterior, is a special case. Therefore, the results of this article can be used to evaluate the consequences of applying the Gibbs sampler when the posterior's impropriety is unknown to the user. Our results cannot, however, be used to detect improper posteriors. Monte Carlo approximations based on Gibbs chains are shown to have undesirable limiting behavior when the posterior is improper. The results are applied to a Bayesian hierarchical one-way random effects model with an improper posterior distribution. The model is simple, but also quite similar to some models with improper posteriors that have been used in conjunction with the Gibbs sampler in the literature.  相似文献   

10.
The finite Markov Chain Imbedding technique has been successfully applied in various fields for finding the exact or approximate distributions of runs and patterns under independent and identically distributed or Markov dependent trials. In this paper, we derive a new recursive equation for distribution of scan statistic using the finite Markov chain imbedding technique. We also address the problem of obtaining transition probabilities of the imbedded Markov chain by introducing a notion termed Double Finite Markov Chain Imbedding where transition probabilities are obtained by using the finite Markov chain imbedding technique again. Applications for random permutation model in chemistry and coupon collector’s problem are given to illustrate our idea.  相似文献   

11.
在需求和提前期均是随机的库存系统中,提前期需求的分布是由提前期分布与需求分布复合而成的,这个复合分布的计算通常是困难的。本文采用基于Gibbs抽样的马尔科夫链蒙特卡洛(MCMC,Markov chain Monte Carlo)方法,抽取条件分布样本作为提前期需求分布的样本,通过样本来计算提前期需求分布密度、服务水平和损失函数。这种方法避免了直接求解复杂积分计算上的困难,也克服了近似分布拟合偏差过大的问题,有效地解决了随机需求与随机提前期的复杂库存系统中提前期需求确定问题。理论与数值分析结果表明:与现有方法相比较,基于MCMC的方法具有计算简便、拟合精度高、通用性好等特点。  相似文献   

12.
We consider random fields defined by finite-region conditional probabilities depending on a neighborhood of the region which changes with the boundary conditions. To predict the symbols within any finite region, it is necessary to inspect a random number of neighborhood symbols which might change according to the value of them. In analogy with the one-dimensional setting we call these neighborhood symbols the context associated to the region at hand. This framework is a natural extension, to d-dimensional fields, of the notion of variable length Markov chains introduced by Rissanen [24] in his classical paper. We define an algorithm to estimate the radius of the smallest ball containing the context based on a realization of the field. We prove the consistency of this estimator. Our proofs are constructive and yield explicit upper bounds for the probability of wrong estimation of the radius of the context.  相似文献   

13.
The multiset sampler has been shown to be an effective algorithm to sample from complex multimodal distributions, but the multiset sampler requires that the parameters in the target distribution can be divided into two parts: the parameters of interest and the nuisance parameters. We propose a new self-multiset sampler (SMSS), which extends the multiset sampler to distributions without nuisance parameters. We also generalize our method to distributions with unbounded or infinite support. Numerical results show that the SMSS and its generalization have a substantial advantage in sampling multimodal distributions compared to the ordinary Markov chain Monte Carlo algorithm and some popular variants. Supplemental materials for the article are available online.  相似文献   

14.
Abstract

We postulate observations from a Poisson process whose rate parameter modulates between two values determined by an unobserved Markov chain. The theory switches from continuous to discrete time by considering the intervals between observations as a sequence of dependent random variables. A result from hidden Markov models allows us to sample from the posterior distribution of the model parameters given the observed event times using a Gibbs sampler with only two steps per iteration.  相似文献   

15.
We consider the symmetric scan Gibbs sampler, and give some explicit estimates of convergence rates on the Wasserstein distance for this Markov chain Monte Carlo under the Dobrushin uniqueness condition.  相似文献   

16.
We introduce a class of spatiotemporal models for Gaussian areal data. These models assume a latent random field process that evolves through time with random field convolutions; the convolving fields follow proper Gaussian Markov random field (PGMRF) processes. At each time, the latent random field process is linearly related to observations through an observational equation with errors that also follow a PGMRF. The use of PGMRF errors brings modeling and computational advantages. With respect to modeling, it allows more flexible model structures such as different but interacting temporal trends for each region, as well as distinct temporal gradients for each region. Computationally, building upon the fact that PGMRF errors have proper density functions, we have developed an efficient Bayesian estimation procedure based on Markov chain Monte Carlo with an embedded forward information filter backward sampler (FIFBS) algorithm. We show that, when compared with the traditional one-at-a-time Gibbs sampler, our novel FIFBS-based algorithm explores the posterior distribution much more efficiently. Finally, we have developed a simulation-based conditional Bayes factor suitable for the comparison of nonnested spatiotemporal models. An analysis of the number of homicides in Rio de Janeiro State illustrates the power of the proposed spatiotemporal framework.

Supplemental materials for this article are available online in the journal’s webpage.  相似文献   

17.
The partially collapsed Gibbs (PCG) sampler offers a new strategy for improving the convergence of a Gibbs sampler. PCG achieves faster convergence by reducing the conditioning in some of the draws of its parent Gibbs sampler. Although this can significantly improve convergence, care must be taken to ensure that the stationary distribution is preserved. The conditional distributions sampled in a PCG sampler may be incompatible and permuting their order may upset the stationary distribution of the chain. Extra care must be taken when Metropolis-Hastings (MH) updates are used in some or all of the updates. Reducing the conditioning in an MH within Gibbs sampler can change the stationary distribution, even when the PCG sampler would work perfectly if MH were not used. In fact, a number of samplers of this sort that have been advocated in the literature do not actually have the target stationary distributions. In this article, we illustrate the challenges that may arise when using MH within a PCG sampler and develop a general strategy for using such updates while maintaining the desired stationary distribution. Theoretical arguments provide guidance when choosing between different MH within PCG sampling schemes. Finally, we illustrate the MH within PCG sampler and its computational advantage using several examples from our applied work.  相似文献   

18.
A new system of multivariate distributions with fixed marginal distributions is introduced via the consideration of random variates that are randomly chosen pairs of order statistics of the marginal distributions. The distributions allow arbitrary positive or negative Pearson correlations between pairs of random variates and generalise the Farlie–Gumbel–Morgenstern distribution. It is shown that the copulas of these distributions are special cases of the Bernstein copula. Generation of random numbers from the distributions is described, and formulas for the Kendall and grade (Spearman) correlations are given. Procedures for data fitting are described and illustrated with examples.  相似文献   

19.
We consider a discrete-time Markov chain on the non-negative integers with drift to infinity and study the limiting behavior of the state probabilities conditioned on not having left state 0 for the last time. Using a transformation, we obtain a dual Markov chain with an absorbing state such that absorption occurs with probability 1. We prove that the state probabilities of the original chain conditioned on not having left state 0 for the last time are equal to the state probabilities of its dual conditioned on non-absorption. This allows us to establish the simultaneous existence, and then equivalence, of their limiting conditional distributions. Although a limiting conditional distribution for the dual chain is always a quasi-stationary distribution in the usual sense, a similar statement is not possible for the original chain.  相似文献   

20.
In this paper, we consider the problem of selecting the variables of the fixed effects in the linear mixed models where the random effects are present and the observation vectors have been obtained from many clusters. As the variable selection procedure, here we use the Akaike Information Criterion, AIC. In the context of the mixed linear models, two kinds of AIC have been proposed: marginal AIC and conditional AIC. In this paper, we derive three versions of conditional AIC depending upon different estimators of the regression coefficients and the random effects. Through the simulation studies, it is shown that the proposed conditional AIC’s are superior to the marginal and conditional AIC’s proposed in the literature in the sense of selecting the true model. Finally, the results are extended to the case when the random effects in all the clusters are of the same dimension but have a common unknown covariance matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号