首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A variety ${\mathbb{V}}${\mathbb{V}} is var-relatively universal if it contains a subvariety \mathbbW{\mathbb{W}} such that the class of all homomorphisms that do not factorize through any algebra in \mathbbW{\mathbb{W}} is algebraically universal. And \mathbbV{\mathbb{V}} has an algebraically universal α-expansion a\mathbbV{\alpha\mathbb{V}} if adding α nullary operations to all algebras in \mathbbV{\mathbb{V}} gives rise to a class a\mathbbV{\alpha\mathbb{V}} of algebras that is algebraically universal. The first two authors have conjectured that any varrelative universal variety \mathbbV{\mathbb{V}} has an algebraically universal α-expansion a\mathbbV{\alpha\mathbb{V}} . This note contains a more general result that proves this conjecture.  相似文献   

2.
Let ${\mathbb{A}}Let \mathbbA{\mathbb{A}} be a universal algebra of signature Ω, and let I{\mathcal{I}} be an ideal in the Boolean algebra P\mathbbA{\mathcal{P}_{\mathbb{A}}} of all subsets of \mathbbA{\mathbb{A}} . We say that I{\mathcal{I}} is an Ω-ideal if I{\mathcal{I}} contains all finite subsets of \mathbbA{\mathbb{A}} and f(An) ? I{f(A^{n}) \in \mathcal{I}} for every n-ary operation f ? W{f \in \Omega} and every A ? I{A \in \mathcal{I}} . We prove that there are 22à0{2^{2^{\aleph_0}}} Ω-ideals in P\mathbbA{\mathcal{P}_{\mathbb{A}}} provided that \mathbbA{\mathbb{A}} is countably infinite and Ω is countable.  相似文献   

3.
We prove that the only compact surfaces of positive constant Gaussian curvature in \mathbbH2×\mathbbR{\mathbb{H}^{2}\times\mathbb{R}} (resp. positive constant Gaussian curvature greater than 1 in \mathbbS2×\mathbbR{\mathbb{S}^{2}\times\mathbb{R}}) whose boundary Γ is contained in a slice of the ambient space and such that the surface intersects this slice at a constant angle along Γ, are the pieces of a rotational complete surface. We also obtain some area estimates for surfaces of positive constant Gaussian curvature in \mathbbH2×\mathbbR{\mathbb{H}^{2}\times\mathbb{R}} and positive constant Gaussian curvature greater than 1 in \mathbbS2×\mathbbR{\mathbb{S}^{2}\times\mathbb{R}} whose boundary is contained in a slice of the ambient space. These estimates are optimal in the sense that if the bounds are attained, the surface is again a piece of a rotational complete surface.  相似文献   

4.
Let \mathbbF{\mathbb{F}} be a finite field and suppose that a single element of \mathbbF{\mathbb{F}} is used as an authenticator (or tag). Further, suppose that any message consists of at most L elements of \mathbbF{\mathbb{F}}. For this setting, usual polynomial based universal hashing achieves a collision bound of (L-1)/|\mathbbF|{(L-1)/|\mathbb{F}|} using a single element of \mathbbF{\mathbb{F}} as the key. The well-known multi-linear hashing achieves a collision bound of 1/|\mathbbF|{1/|\mathbb{F}|} using L elements of \mathbbF{\mathbb{F}} as the key. In this work, we present a new universal hash function which achieves a collision bound of mélogm Lù/|\mathbbF|, m 3 2{m\lceil\log_m L\rceil/|\mathbb{F}|, m\geq 2}, using 1+élogm Lù{1+\lceil\log_m L\rceil} elements of \mathbbF{\mathbb{F}} as the key. This provides a new trade-off between key size and collision probability for universal hash functions.  相似文献   

5.
For n = 1, the space of ${\mathbb{R}}For n = 1, the space of \mathbbR{\mathbb{R}} -places of the rational function field \mathbbR(x1,?, xn){\mathbb{R}(x_1,\ldots, x_n)} is homeomorphic to the real projective line. For n ≥ 2, the structure is much more complicated. We prove that the space of \mathbbR{\mathbb{R}} -places of the rational function field \mathbbR(x, y){\mathbb{R}(x, y)} is not metrizable. We explain how the proof generalizes to show that the space of \mathbbR{\mathbb{R}} -places of any finitely generated formally real field extension of \mathbbR{\mathbb{R}} of transcendence degree ≥ 2 is not metrizable. We also consider the more general question of when the space of \mathbbR{\mathbb{R}} -places of a finitely generated formally real field extension of a real closed field is metrizable.  相似文献   

6.
The Gallant–Lambert–Vanstone (GLV) method is a very efficient technique for accelerating point multiplication on elliptic curves with efficiently computable endomorphisms. Galbraith et al. (J Cryptol 24(3):446–469, 2011) showed that point multiplication exploiting the 2-dimensional GLV method on a large class of curves over \mathbbFp2{\mathbb{F}_{p^2}} was faster than the standard method on general elliptic curves over \mathbbFp{\mathbb{F}_{p}} , and left as an open problem to study the case of 4-dimensional GLV on special curves (e.g., j (E) = 0) over \mathbbFp2{\mathbb{F}_{p^2}} . We study the above problem in this paper. We show how to get the 4-dimensional GLV decomposition with proper decomposed coefficients, and thus reduce the number of doublings for point multiplication on these curves to only a quarter. The resulting implementation shows that the 4-dimensional GLV method on a GLS curve runs in about 0.78 the time of the 2-dimensional GLV method on the same curve and in between 0.78 − 0.87 the time of the 2-dimensional GLV method using the standard method over \mathbbFp{\mathbb{F}_{p}} . In particular, our implementation reduces by up to 27% the time of the previously fastest implementation of point multiplication on x86-64 processors due to Longa and Gebotys (CHES2010).  相似文献   

7.
The field of quaternions, denoted by \mathbbH{\mathbb{H}} can be represented as an isomorphic four dimensional subspace of \mathbbR4×4{\mathbb{R}^{4\times 4}}, the space of real matrices with four rows and columns. In addition to the quaternions there is another four dimensional subspace in \mathbbR4×4{\mathbb{R}^{4\times 4}} which is also a field and which has – in connection with the quaternions – many pleasant properties. This field is called field of pseudoquaternions. It exists in \mathbbR4×4{\mathbb{R}^{4\times 4}} but not in \mathbbH{\mathbb{H}}. It allows to write the quaternionic linear term axb in matrix form as Mx where x is the same as the quaternion x only written as a column vector in \mathbbR4{\mathbb{R}^4}. And M is the product of the matrix associated with the quaternion a with the matrix associated with the pseudoquaternion b.  相似文献   

8.
Dimension elevation refers to the Chebyshevian version of the classical degree elevation process for polynomials or polynomial splines. In this paper, we consider the case of splines. The original spline space is based on a given Extended Chebsyhev space \mathbbE{\mathbb{E}} contained in another Extended Chebsyhev space \mathbbE*{\mathbb{E}}^* of dimension increased by one. The original spline space, based on \mathbbE{\mathbb{E}}, is then embedded in a larger one, based on \mathbbE*\mathbb{E}^*. Thanks to blossoms we show how to compute the new poles of any spline in the original spline space in terms of its initial poles.  相似文献   

9.
It is shown that the n-dimensional Klein bottle admits a Lagrangian embedding into \mathbbR2n{\mathbb{R}^{2n}} if and only if n is odd.  相似文献   

10.
Carlson and Toledo conjectured that if an infinite group Γ is the fundamental group of a compact K?hler manifold, then virtually H2(G, \mathbb R) 1 0{H^{2}(\Gamma, {\mathbb R}) \ne 0} . We assume that Γ admits an unbounded reductive rigid linear representation. This representation necessarily comes from a complex variation of Hodge structure ( \mathbbC{\mathbb{C}} -VHS) on the K?hler manifold. We prove the conjecture under some assumption on the \mathbbC{\mathbb{C}} -VHS. We also study some related geometric/topological properties of period domains associated to such a \mathbbC{\mathbb{C}} -VHS.  相似文献   

11.
Let j{\varphi} be an analytic self-map of the unit disk \mathbbD{\mathbb{D}}, H(\mathbbD){H(\mathbb{D})} the space of analytic functions on \mathbbD{\mathbb{D}} and g ? H(\mathbbD){g \in H(\mathbb{D})}. The boundedness and compactness of the operator DCj : H ? Z{DC_\varphi : H^\infty \rightarrow { \mathcal Z}} are investigated in this paper.  相似文献   

12.
Every compact smooth manifold M is diffeomorphic to the set X(\mathbbR){X(\mathbb{R})} of real points of a nonsingular projective real algebraic variety X, which is called an algebraic model of M. Each algebraic cycle of codimension k on the complex variety X\mathbbC=X×\mathbbR\mathbbC{X_{\mathbb{C}}=X\times_{\mathbb{R}}\mathbb{C}} determines a cohomology class in H2k(X(\mathbbR);\mathbbD){H^{2k}(X(\mathbb{R});\mathbb{D})} , where \mathbbD{\mathbb{D}} denotes \mathbbZ{\mathbb{Z}} or \mathbbQ{\mathbb{Q}} . We investigate the behavior of such cohomology classes as X runs through the class of algebraic models of M.  相似文献   

13.
Let ${\mathbb{G}}Let \mathbbG{\mathbb{G}} be a Carnot group of step r and m generators and homogeneous dimension Q. Let \mathbbFm,r{\mathbb{F}_{m,r}} denote the free Lie group of step r and m generators. Let also p:\mathbbFm,r?\mathbbG{\pi:\mathbb{F}_{m,r}\to\mathbb{G}} be a lifting map. We show that any horizontally convex function u on \mathbbG{\mathbb{G}} lifts to a horizontally convex function u°p{u\circ \pi} on \mathbbFm,r{\mathbb{F}_{m,r}} (with respect to a suitable horizontal frame on \mathbbFm,r{\mathbb{F}_{m,r}}). One of the main aims of the paper is to exhibit an example of a sub-Laplacian L=?j=1m Xj2{\mathcal{L}=\sum_{j=1}^m X_j^2} on a Carnot group of step two such that the relevant L{\mathcal{L}}-gauge function d (i.e., d 2-Q is the fundamental solution for L{\mathcal{L}}) is not h-convex with respect to the horizontal frame {X 1, . . . , X m }. This gives a negative answer to a question posed in Danielli et al. (Commun. Anal. Geom. 11 (2003), 263–341).  相似文献   

14.
The main aim of this article is to study the hypercomplex π-operator over \mathbbCn+1{\mathbb{C}^{n+1}} via real, compact, n + 1-dimensional manifolds called domain manifolds. We introduce an intrinsic Dirac operator for such types of domain manifolds and define an intrinsic π-operator, study its mapping properties and introduce a Clifford–Beltrami equation in this context.  相似文献   

15.
We show the existence and uniqueness of the (asymptotically) almost periodic solution to parabolic evolution equations with inhomogeneous boundary values on \mathbbR{\mathbb{R}} and \mathbbR±\mathbb{R}_{\pm}, if the data are (asymptotically) almost periodic. We assume that the underlying homogeneous problem satisfies the ‘Acquistapace–Terreni’ conditions and has an exponential dichotomy. If there is an exponential dichotomy only on half intervals ( − ∞, − T] and [T, ∞), then we obtain a Fredholm alternative of the equation on \mathbbR{\mathbb{R}} in the space of functions being asymptotically almost periodic on \mathbbR+{\mathbb{R}}_{+} and \mathbbR-\mathbb{R}_{-}.  相似文献   

16.
Bent and almost-bent functions on \mathbbZp2{\mathbb{Z}_p^2} are studied in this paper. By calculating certain exponential sum and using a technique due to Hou (Finite Fields Appl 10:566–582, 2004), we obtain a degree bound for quasi-bent functions, and prove that almost-bent functions on \mathbbZp2{\mathbb{Z}_p^2} are equivalent to a degenerate quadratic form. From the viewpoint of relative difference sets, we also characterize bent functions on \mathbbZp2{\mathbb{Z}_p^2} in two classes of M{\mathcal{M}} ’s and PS{\mathcal{PS}} ’s, and show that the graph set corresponding to a bent function on \mathbbZp2{\mathbb{Z}_p^2} can be written as the sum of a graph set of M{\mathcal{M}} ’s type bent function and another group ring element. By using our characterization and some technique of permutation polynomial, we obtain the result: a bent function must be of M{\mathcal{M}} ’s type if its corresponding set contains more than (p − 3)/2 flats. A problem proposed by Ma and Pott (J Algebra 175:505–525, 1995) is therefore partially answered.  相似文献   

17.
We discuss upper bounds for the resolvent of an \mathbbR{\mathbb{R}}-linear operator in \mathbbCd{\mathbb{C}^d}.  相似文献   

18.
Aim of this paper is to provide new examples of H?rmander operators L{\mathcal{L}} to which a Lie group structure can be attached making L{\mathcal{L}} left invariant. Our class of examples contains several subclasses of operators appearing in literature and arising both in theoretical and in applied fields: evolution Kolmogorov operators, degenerate Ornstein–Uhlenbeck operators, Mumford and Fokker–Planck operators, Ornstein–Uhlenbeck operators with time-dependent periodic coefficients. Our examples basically come from exponential of matrices, as well as from linear constant-coefficient ODE’s, in \mathbbR{\mathbb{R}} or in \mathbbC{\mathbb{C}} . Furthermore, we describe how these groups can be combined together to obtain new structures and new operators, also having an interest in the applied field.  相似文献   

19.
Let \mathbb GL(2, \mathbbH){{\mathbb G}L(2, \mathbb{H})} be the group of invertible 2 × 2 matrices over the division algebra \mathbbH{\mathbb{H}} of quaternions. \mathbb GL(2, \mathbbH){{\mathbb G}L(2, \mathbb{H})} acts on the hyperbolic 5-space as the group of orientation-preserving isometries. Using this action we give an algebraic characterization of the orientation-preserving isometries of the hyperbolic 5-space. Along the way we also determine the conjugacy classes and the conjugacy classes of centralizers or the z-classes in \mathbb GL(2, \mathbbH){{\mathbb G}L(2, \mathbb{H})} .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号