首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Transition metal catalyzed reactions of catecholborane (HBcat; cat = 1,2-O2C6H4) with β-nitrostyrene and 3-nitrostyrene lead to products derived from competing hydrogenation and hydroboration of the alkene unit along with reduction of the nitro group. Hydroboration of 4-vinylaniline gave regioselective formation of either the branched or the linear organoboronate ester depending upon the catalyst precursors (i.e., RhCl(PPh3)3 or Rh(acac)(dppe) vs [CpIrCl2]2) used to facilitate this reaction. Hydroboration products were converted to air-stable primary amines by addition of pinacol.  相似文献   

2.
The addition of catecholborane (HBcat; cat = 1,2-O2C6H4) to a wide range of sulfoxides affords the corresponding sulfides, dihydrogen, and catBOBcat. The diboron compound catBOBcat acts like a Lewis acid and will coordinate one molecule of the starting sulfoxide. Although deoxygenations with bulky or electron withdrawing sulfoxides are slow, these reactions can be greatly accelerated with the use of excess HBcat or by employing a rhodium catalyst.  相似文献   

3.
The hydroboration of 1,1-diphenylethylene (DPE) with catecholborane (HBcat) proceeds at 100 °C. For conversion at room temperature three different organocalcium catalysts have been investigated: the calcium hydride complex [DIPPnacnacCaH·(THF)]2 (1, DIPPnacnac = CH{(CMe)(2,6-iPr2C6H3N)}2), Ca[2-Me2N-α-Me3Si-benzyl)2·(THF)2 (2) and DIPPnacnacCa(H-BBN)·(THF) (3, BBN = 9-borabicyclo[3.3.1.]nonane). Although up to 96% conversion of DPE is found, the product of the reaction is not the expected Ph2CHCH2Bcat but (Ph2CHCH2)3B is formed instead. Organocalcium compounds catalyze the decomposition of HBcat to B2(cat)3 and BH3 (or B2H6) and the latter is involved in hydroboration of DPE. The calcium-catalyzed decomposition of HBcat was investigated with 11B NMR and the signals were assigned to the following species: B2(cat)3, B(cat)2?, HBcat, BH3(THF), BH4? and B2H7?. A tentative mechanism for the formation of these species was proposed. The intermediate DIPPnacnacCa(BH4)·(THF)2 (5) was independently prepared by reaction of 1 and BH3(Me2S) and was structurally characterized by X-ray diffraction. Stoichiometric reaction of 1 with pinacolborane (HBpin) gave a trimeric complex [DIPPnacnacCa(H2Bpin)]3 (6) which was structurally characterized by X-ray diffraction. This complex does not react with DPE, also not at elevated temperatures. The possible equilibrium between 6 and 1/HBpin is therefore fully at the side of 6. As 6 is unstable in the presence of HBpin, no further catalytic conversions have been investigated.  相似文献   

4.
Support for key steps of the mechanism for the transition metal catalyzed hydroboration reaction is provided by the characterization and reactions of 1 , a cis-(boryl)(aryl) complex of osmium(II ). This compound readily eliminates o-tolylBcat to give the osmium(0) intermediate 2 , which in the presence of HBcat reestablishes the osmium–boron bond by forming 3 . R=o-tolyl, H2cat=catechol=1,2-(HO)2C6H4.  相似文献   

5.
Four different ligands of the Salan class have been prepared and reacted with boric acid. Reaction of saleanH4 (saleanH4 = N,N′-bis(o-hydroxybenzyl)-1,2-diaminoethane) with three equivalents of boric acid gave a neutral trinuclear boron complex containing two four-coordinate and one three-coordinate boron atom involved in a system of four heterocyclic rings of the composition {C3BNO}, {C2B2N2O} and {B3O3}. The salceanH4 ligand (salceanH4 = N,N′-bis(o-hydroxybenzyl)-trans-1,2-diaminocyclohexane) gave a so far unknown mononuclear boronium complex of the general formula [(RO)2B(NR′R′′)2]+. Both compounds might have applications, the trinuclear species as Lewis acid catalyst and the borocation as positively charged counterion for voluminous anions. With salpanH4 (salpanH4 = N,N′-bis(o-hydroxybenzyl)-1,3-diaminopropane) and salophanH4 (salophanH4 = N,N′-bis(o-hydroxybenzyl)-1,2-diaminobenzene) only unseparable product mixtures of oligo- and/or polymeric boron complexes could be obtained.  相似文献   

6.
The synthesis and spectroscopic characterisation of the new diborane(4) compounds B2(1,2-O2C6Cl4)2 and B2(1,2-O2C6Br4)2 are reported together with the diborane(4) bis-amine adduct [B2(calix)(NHMe2)2] (calix=Butcalix[4]arene). B–B bond oxidative addition reactions between the platinum(0) compound [Pt(PPh3)2(η-C2H4)] and the diborane(4) compounds B2(1,2-S2C6H4)2, B2(1,2-O2C6Cl4)2 and B2(1,2-O2C6Br4)2 are also described which result in the platinum(II) bis-boryl complexes cis-[Pt(PPh3)2{B(1,2-S2C6H4)}2], cis-[Pt(PPh3)2{B(1,2-O2C6Cl4)}2] and cis-[Pt(PPh3)2{B(1,2-O2C6Br4)}2] respectively, the former two having been characterised by X-ray crystallography. In addition, the platinum complex [Pt(PPh3)2(η-C2H4)] reacts with XB(1,2-O2C6H4) (X=Cl, Br) affording the mono-boryl complexes trans-[PtX(PPh3)2{B(1,2-O2C6H4)}] as a result of oxidative addition of the B–X bonds to the Pt(0) centre; the chloro derivative has been characterised by X-ray crystallography.  相似文献   

7.
A new complex of unusual composition [Cu(3-O2Nbz)2(nia)(H2O)2] (1) (nia = nicotinamide, 3-O2Nbz = 3-nitrobenzoate) has been prepared and studied together with two other complexes of composition [Cu(4-O2Nbz)2(nia)2(H2O)2] (2) and [Cu(4-O2Nbz)2(nia)2]?(4-O2NbzH)2 (3) (4-O2Nbz = 4-nitrobenzoate). The composition of all complexes has been determined by elemental analysis, the complexes have been studied by electronic, infrared and EPR spectroscopy, as well as by magnetization measurements over the temperature range 1.8–300 K, and their structures have been solved. The structure of complex (1) consists of molecules, where Cu(II) atom is monodentately coordinated by the pair of 3-nitrobenzoato anions in trans  -positions together with water and nicotinamide molecules, forming nearly tetragonal basal plane, and by another water molecule in axial position of tetragonal-pyramidal coordination polyhedron. The neighboring molecule coordination polyhedron basal planes are coplanar and allow formation of supramolecular dimers with strong H-bonds between hydrogen atoms from equatorially coordinated water molecules and uncoordinated carboxylate oxygen atoms thus giving the nearest Cu??Cu distance of 4.886(2) Å. Magnetization measurements showed that complex (1) exhibits maximum of magnetic susceptibility at 6.5 K and a fit to Bleaney-Bowers equation gave singlet–triplet energy gap 2J = −6.25 cm−1, and zJ′ = −0.03 cm−1. This might be an experimental proof that the carboxylate bridges extended with hydrogen bonds are the pathway of the spin–spin interactions. The temperature dependence of changes in EPR spectra of (1) and the spectrum at 4.2 K have confirmed its hydrogen bonded dimeric structure. The calculated Cu??Cu distance 4.8 Å is in very good agreement with the value obtained from crystal structure. The complexes (2) and (3) at 300 K exhibit magnetic moment μeff = 1.98 B.M. and μeff = 1.84 B.M., respectively. These values practically do not change with lowering the temperature up to 5 K and only small drops to μeff = 1.87 B.M. (for (2)) and μeff = 1.79 B.M. (for (3)) at 1.8 K have been observed. The EPR spectra of complex (2) at room temperature as well as at 77 K are of axial type with g = 2.062 and g|| = 2.285 and exhibit resolved parallel hyperfine splitting with A|| = 160 Gauss. The EPR spectra of complex (3) at room temperature as well as at 77 K are of axial type with g = 2.065 and g|| = 2.235 and exhibit unresolved parallel hyperfine splitting. EPR spectra of (2) and (3) are consistent with the X-ray structure.  相似文献   

8.
The transition‐metal‐free hydroboration of various alkenes with pinacolborane (HBpin) initiated by tris[3,5‐bis(trifluoromethyl)phenyl]borane (BArF3) is reported. The choice of the boron Lewis acid is crucial as the more prominent boron Lewis acid tris(pentafluorophenyl)borane (B(C6F5)3) is reluctant to react. Unlike B(C6F5)3, BArF3 is found to engage in substituent redistribution with HBpin, resulting in the formation of ArFBpin and the electron‐deficient diboranes [H2BArF]2 and [(ArF)(H)B(μ‐H)2BArF2]. These in situ‐generated hydroboranes undergo regioselective hydroboration of styrene derivatives as well as aliphatic alkenes with cis diastereoselectivity. Another ligand metathesis of these adducts with HBpin subsequently affords the corresponding HBpin‐derived anti‐Markovnikov adducts. The reactive hydroboranes are regenerated in this step, thereby closing the catalytic cycle.  相似文献   

9.
The monocationic chloro complexes containing chelating 1,10-phenanthroline (phen) ligands [(arene)Ru(N∩N)Cl]+ (1: arene = C6H6, N∩N = phen; 2: arene = C6H6, N∩N = 5-NO2-phen; 3: arene = p-MeC6H4Pri, N∩N = phen; 4: arene = p-MeC6H4Pri, N∩N = 5-NO2-phen; 5: arene = C6Me6, N∩N = phen; 6: arene = C6Me6, N∩N = 5-NO2-phen; 7: arene = C6Me6, N∩N = 5-NH2-phen) have been prepared and characterised as the chloride salts. Hydrolysis of these chloro complexes in aqueous solution gave, upon precipitation of silver chloride, the corresponding dicationic aqua complexes [(arene)Ru(N∩N)(OH2)]2+ (8: arene = C6H6, N∩N = phen; 9: arene = C6H6, N∩N = 5-NO2-phen; 10: arene = p-MeC6H4Pri, N∩N = phen; 11: arene = p-MeC6H4Pri, N∩N = 5-NO2-phen; 12: arene = C6Me6, N∩N = phen; 13: arene = C6Me6, N∩N = 5-NO2-phen; 14: arene = C6Me6, N∩N = 5-NH2-phen), which have been isolated and characterised as the tetrafluoroborate salts. The catalytic potential of the aqua complexes 8-14 for transfer hydrogenation reactions in aqueous solution has been studied: complexes 12 and 14 catalyse the reaction of acetophenone with formic acid to give phenylethanol and carbon dioxide with turnover numbers around 200 (80 °C, 7 h). In the case of 12, it was possible to observe the postulated hydrido complex [(C6Me6)Ru(phen)H]+ (15) in the reaction with sodium borohydride; 15 has been characterised as the tetrafluoroborate salt, the isolated product [15]BF4, however, being impure. The molecular structures of [(C6Me6)Ru(phen)Cl]+ (1) and [(C6Me6)Ru(phen)(OH2)]2+ (12) have been determined by single-crystal X-ray structure analysis of [1]Cl and [12](BF4)2.  相似文献   

10.
We have designed and synthesized three new metal-1,1′-ferrocenedicarboxylate complexes containing tetrametallic macrocyclic building units, namely, [Cd22-O2CFcCO22)2(phen)2(H2O)2] · 4CH3OH (1) (Fc = (η5-C5H4)Fe(C5H45), phen = 1,10-phenanthroline), {[Cd(η2-O2CFcCO2)(pebbm)(H2O)] · 2H2O}n (2) (pebbm = 1,1′-(1,5-pentanediyl)bis-1H-benzimidazole) and {[Cd(η2-O2CFcCO22)(prbbm)(H2O)] · 3H2O}n (3) (prbbm = 1,1′-(1,3-propanediyl)bis-1H-benzimidazole). Compound 1 is a 0-D discrete tetrametallic macrocyclic framework. Compound 2 features an infinite 1-D ribbon of rings structure constructed by the subsidiary ligands pebbm connecting tetrametallic macrocyclic building units. For 3, its tetrametallic macrocyclic building units are linked by the subsidiary ligands prbbm to form a 2-D network structure. The structural features of these complexes indicate that the ferrocenedicarboxylate tetrametallic macrocycle can be used as a successful molecular building unit and the shapes and conformational flexibility of subsidiary ligands play a crucial role in the manipulation of the configuration of the resultant MOFs. Their fluorescence spectra in solid state at room temperature suggest that the fluorescence emissions of 1-3 are ruled by 1,1′-ferrocenedicarboxylate ligand.  相似文献   

11.
Compound [NbCp′Me4] (Cp′ = η5-C5H4SiMe3, 1) reacted with several ROH compounds (R = tBu, SiiPr3, 2,6-Me2C6H3) to give the derivatives [NbCp′Me3(OR)] (R = tBu 2a, SiiPr32b, 2,6-Me2C6H32c). The diaryloxo tantalum compound [TaCpMe2(OR)2] (Cp = η5-C5Me5, R = 2,6-Me2C6H33) was obtained by reaction of [TaCpCl2Me2] with 2 equiv of LiOR (R = 2,6-Me2C6H3). Abstraction of one methyl group from these neutral compounds 1-3 with the Lewis acids E(C6F5)3 (E = B, Al) gave the ionic derivatives [NbCp′Me2X][MeE(C6F5)3] (X = Me 4-E. X = OR; R = SiiPr35b-E, 2,6-Me2C6H35c-E. E = B, Al) and [TaCpMe(OR)2][MeE(C6F5)3] (R = 2,6-Me2C6H36-E; E = B, Al). Polymerization of MMA with the aryloxoniobium compound 2c and Al(C6F5)3 gave syndiotactic PMMA in a low yield, whereas the tetramethylniobium compound 1 and the diaryloxotantalum derivative 3 were inactive.  相似文献   

12.
The reaction of [PtX2(L)] (X = Cl, Br, I; L = NH2CH2CH2NY2; Y = Et, Me) with thallium(I) carbonate and a polyfluorobenzene (RF) in pyridine (py) yields the platinum(II) complexes, [Pt{N(R)CH2CH2NY2}X(py)] (R = C6F5, 4-HC6F4, 4-BrC6F4, or 4-IC6F4, Y = Et (1), Me (2), X = Cl, Br or I) in an improved synthesis. From the reaction of [PtCl2(H2NCH2)2)] with Tl2CO3 and 1,2,3,4-tetrafluorobenzene or 2-bromo-1,3,4,5-tetrafluorobenzene in py, the new complexes [Pt(NRCH2)2(py)2] (3) (R = C6H2F3-2,3,6 and C6HBrF3-2,3,5,6) have been isolated but the latter preparation also gave product(s) with a 4-bromo-2,3,5-trifluorophenyl group. From an analogous preparation in 4-ethylpyridine (etpy), [Pt(N(4-HC6F4)CH2)2(etpy)2] (4) was obtained. The X-ray crystal structures of (3) (R = C6HBrF3-2,3,5,6) and (4) were determined as well as that of the previously prepared (3) (R = 4-BrC6F4) and a more precise structure of (3) (R = 4-HC6F4) has been obtained.  相似文献   

13.
The novel ruthenium dithiolene complexes [(arene)Ru{S2C2(COOMe)2}] (arene = C6H6 (1a), C6H4(Me)(iPr) (1b), C6Me6 (1c)) were synthesized. The equilibrium between complex 1a and the corresponding dimer [(C6H6)Ru{S2C2(COOMe)2}]2 (1a′) was confirmed in solution. The reaction of complex 1a with dimethyl- or diethylacetylene dicaboxylate gave the alkene-bridged adducts [(C6H6)Ru{S2C2(COOMe)2}{C2(COOR)2}] (R = Me (2a), Et (3a)) as [2 + 2] cycloaddition products formally. The reactions of complex 1a with diazo compounds also gave the alkylidene-bridged adducts [(C6H6)Ru{S2C2(COOMe)2}(CHR)] (R = H (4a), SiMe3 (5a), COOEt (6a)) as [2 + 1] cycloaddition products. The electrochemical behavior of complex 1a was investigated. The reductant of complex 1a was a stable species for several minutes. The oxidant of complex 1a was very unstable; the cation 1a+ formed was immediately converted to the corresponding cationic dimer 1a+. The cationic dimer 1a+ was stable for several minutes, and it was rapidly and quantitatively converted to the neutral complex 1a when it was reduced.  相似文献   

14.
《中国化学快报》2023,34(10):108293
We report two air-stable nickel(II) half-sandwich complexes, Cp*Ni(1,2-Cy2PC6H4O) (1) and Cp*Ni(1,2-Ph2PC6H4NH) (2), for cooperative B-H bond activation and their applications in catalytic hydroboration of unsaturated organic compounds. Both 1 and 2 react with HBpin by adding the B-H bond across the Ni−X bond (X = O or N), giving rise to the 18-electron Ni(II)−H active species, [H1(Bpin)] and [H2(Bpin)]. Subtle tuning of the Ni−X pair and the supporting ancillary phosphine have a significant effect on the reactivity and catalytic performance of Cp*Ni(1,2-R2PC6H4X). Unlike [H2(Bpin)], the activation of HBpin in [H1(Bpin)] is reversible, which enables the Ni−O complex to be an effective cooperative catalyst in the hydroboration of N-heteroarenes, and as well as ketones and imines.  相似文献   

15.
Coordinatively unsaturated rhodium and iridium complexes having a bulky thiolate, [Cp∗M(PMe3)(SDmp)](BArF4) (1a: M = Rh; 1b: M = Ir; Dmp = 2,6-(mesityl)2C6H3, ArF = 3,5-(CF3)2C6H3), catalyzed the hydrogenation of benzaldehyde, N-benzylideneaniline, and cyclohexanone, under 1 atm of H2 at low temperatures. In these catalytic reactions, the M-H/S-H complexes [Cp∗M(PMe3)(H)(HSDmp)](BArF4) (2a: M = Rh; 2b: M = Ir) generated via H2 heterolysis by 1a or 1b were suggested to transfer both M-H hydride and S-H proton to substrates. The catalytic reactions were terminated by the dissociation of H-SDmp from the metal centers of 2a and 2b that occurs at ambient temperature under H2 atmosphere.  相似文献   

16.
The reactions of a series of 5-alkyl-2-thiophenedithiocarboxylates with nickel(II) chloride afforded two types of complexes, blue nickel(II) complexes with two terminal dithiocarboxylate ligands, [Ni(S2CTR)2] and violet nickel(II) complexes with perthio- and dithiocarboxylate ligands, [Ni(S2CTR)(S3CTR)] (where T = 2,5-disubstituted thiophene, R = CnH2n+1, n = 4, 6, 8, 12, 16). The blue monomers are preferred for the shorter chains (C4 and C6) and the violet compounds form exclusively for the longer chains (C8, C12, and C16) in the alkylthiophene complexes. In addition to the above series, [Ni(S2CTCH3)2], was prepared in a one-pot reaction in THF and both the blue and violet products were isolated. It was possible to convert the blue complexes [Ni(S2CTR)2] (R = butyl, hexyl) into the corresponding violet complexes [Ni(S2CTR)(S3CTR)] after stirring in THF solutions for prolonged periods of time. Liquid-crystalline properties of these complexes were examined by DSC and POM. The violet complexes with C8 and C12 alkyl chains showed liquid-crystalline properties.  相似文献   

17.
Reaction of 2 equiv. of (C4Me4P)Li(tmeda) (tmeda = tetraethylenediamine) with 1 equiv. of ScCl3(THF)3 gave the new compound (η5-C4Me4P)2ScCl2Li(tmeda) (1), which was characterized by X-ray crystallography. A phospholyl moiety in 1 is labile, as demonstrated by reactions of 1 with LiCH(SiMe3)2 and CpLi (Cp = C5Me5) to afford, respectively, (η5-Me4C4P)Sc[CH(SiMe3)2]Cl2Li(tmeda) (4) and (η5-Me4C4P)CpScCl2Li(tmeda) (5). Attempts to generate alkyl derivatives of the general type (η5-C4Me4P)2ScR (R = alkyl) were unsuccessful.  相似文献   

18.
The complex [(η5-C5H5)Ru(PPh3)2Cl] (1) reacts with several arylazoimidazole (RaaiR′) ligands, viz., 2-(phenylazo)imidazole (Phai-H), 1-methyl-2-(phenylazo)imidazole (Phai-Me), 1-ethyl-2-(phenylazo)imidazole (Phai-Et), 2-(tolylazo)imidazole (Tai-H), 1-methyl-2-(tolylazo)imidazole (Tai-Me) and 1-ethyl-2-(tolylazo)imidazole (Tai-Et), gave complexes of the type [(η5-C5H5)Ru(PPh3)(RaaiR′)]+ {where R, R′ = H (2), R = H, R′ = CH3 (3), R = H, R′ = C2H5 (4), R = CH3, R′ = H (5), R, R′ = CH3 (6), R = CH3, R′ = C2H5 (7)}. The complex [(η5-C9H7)Ru(PPh3)2(CH3CN)]+ (8) undergoes reactions with a series of N,N-donor azo ligands in methanol yielding complexes of the type [(η5-C9H7) Ru(PPh3)(RaaiR′)]+ {where R, R′ = H (9), R = H, R′ = CH3 (10), R = CH3, R′ = H (11), R = CH3, R′ = C2H5 (12)}, respectively. These complexes were characterized by FT IR and FT NMR spectroscopy as well as by analytical data. The molecular structure of the complex [(η5-C5H5)Ru(PPh3)(C6H5-NN-C3H3N2)]+ (2) was established by single crystal X-ray diffraction study.  相似文献   

19.
Reactions of the di-iron complex [Fe2(μ-S)2(CO)6]2− with carboxy-functionalized dihalide derivatives (XCH2)2R (X = Cl, R = NC6H4CH2CO2CH3; X = Br, R = C6H3COOH, C6H3COON(COCH2)2) gave new functionalized dithiolate di-iron complexes [Fe2(μ-SRS)(CO)6] (R = (CH2)2NC6H4CH2CO2CH3 (1), (CH2)2C6H3COOH (2), (CH2)2C6H3COON(COCH2)2 (3)) in low yields. The azadithiolate complex 1 has been characterized by a single crystal X-ray diffraction analysis and studied by electrochemical methods.  相似文献   

20.
Two series of new divalent organolanthanide complexes with the general formula [η51-{1-R-3-(C5H9OCH2)C9H5}]2LnII (R = H, Ln = Yb (3); R = Me3Si, Ln = Yb (4); R = H, Ln = Eu (5); R = Me3Si, Ln = Eu (6)) were prepared by reactions of 2 equiv. of 1-R-3-(C5H9OCH2)C9H6 (R = H (1), R = Me3Si (2)) with the lanthanide(III) amides [(Me3Si)2N]3Ln(μ-Cl)Li(THF)3 (Ln = Yb, Eu) via a one-electron reductive elimination process. Recrystallization of 6 from n-hexane afforded [η51-(C5H9OCH2C9H5SiMe3)]2EuII · (C6H14)0.5 (7). All compounds were fully characterized by elemental analyses, and spectroscopic methods. The structures of complexes 4 and 7 were additionally determined by single-crystal X-ray analyses. The catalytic activity of the complexes on methyl methacrylate and ε-caprolactone polymerization was studied, and the temperatures, substituents on the indenyl ring, and solvents effects on the catalytic activity of the complexes were examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号