首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New photoresponsive polymers 1–4 containing pendant norbornadiene (NBD) moieties with N,N-disubstituted amide groups were synthesized with 97, 98, 92, and 94% conversions by the substitution reaction of poly (p-chloromethyl) styrene] with potassium salts of 3piperidyloxo-2,5-NBD-2-carboxylic acid, 3-(NN-dipropylcarbamoyl) -2,5-NBD-2-carboxylic acid, 3-(N-methyl-N-phenylcarbamoyl)-2,5-NBD-2-carboxylic acid, and 3-(N,N-dipheylcarbmoyl)-2,5-NBD-2-carboxylic acid, respectively, using tetrabutylammonium bromide as a phase transfer catalyst for all. Polymers 1–4 with N,N-disubstituted amide groups on the NBD moieties were sensitized by adding appropriate photosensitizers such as Michler's ketone and 4- (N,N-dimethylamino) benzophenone in the film state, although the reactivities of the polymers without photosensitizer were lower than that of our previously reported polymer 5 containing pendant 3- (N-phenylcarbamoyl) -2,5-NBD-2-carboxylate moiety. It was also found that the photo-irradiated retaining polymers 1–4 containing the corresponding QC moieties can be stored about 80–86 kJ/mol of their thermal energy. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Four different types of conjugated copolymers, consisting of alternating structures of phenothiazinylene vinylene and phenylene vinylene derivatives such as phenylene vinylene, 1,1′‐biphenyl‐4,4′‐ylene vinylene, 2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylene vinylene, and 9,10‐anthrylene vinylene, were prepared by Horner–Emmons condensation between appropriate diphosphonates and dialdehydes. Single‐layer and double‐layer light‐emitting diodes were fabricated with the synthesized conjugated polymers, and their electroluminescent properties were investigated. Poly(N‐2‐ethylhexyl‐3,6‐phenothiazinylene vinylene‐alt‐9,10‐anthrylene vinylene), containing phenothiazinylene vinylene and anthrylene vinylene as repeat units, emitted a reddish‐orange color with Commission Internationale de l'Eclairage coordinates of x = 0.6173 and y = 0.3814 that was very similar to the National Television System Committee standard red, and it showed a bipolar carrier‐injection/transporting capability caused by electron‐withdrawing anthracene and electron‐donating amino groups. Poly[N‐2‐ethylhexyl‐3,6‐phenothiazinylene vinylene‐alt‐2‐methoxy‐5‐(2‐ethylhexyloxy)‐1,4‐phenylene vinylene], containing phenothiazinylene vinylene and dialkoxy phenylene vinylene moieties, showed excellent hole‐injection/transporting capability. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 2502–2511, 2003  相似文献   

3.
Three novel triarylamine dyes(AFL1-AFL3) containing fluorenyl and the biphenyl moieties have been designed and synthesized for application in dye-sensitized solar cells.The light-harvesting capabilities and photovoltaic performance of these dyes were investigated systematically through comparison of different π-bridges.The dye with a furan linker exhibited a higher open-circuit voltage(V_(OC)) and monochromatic incident photon-to-current conversion efficiency(IPCE) compared to thiophene and benzene linker.Thus,AFL3 containing a furan linker exhibited the maximum overall conversion efficiency of 5.81%(V_(OC) = 760 mV,J_(SC) = 11.36 mA cm~2 and ff=0.68) under standard global AM 1.5 G solar condition.  相似文献   

4.
A series of conjugated/non-conjugated copolymers and their corresponding oligomers were prepared and their optical and physical properties were investigated for understanding the merit of blocking the conjugated chromophores with non-conjugated spacers. It was found that compared to the oligomers, copolymers have the advantages of amorphous nature, high thermal stability, and good thin film processability without sacrificing the quantum efficiency and purity of the emission color. Furthermore, based on the optical data of these copolymers and oligomers, the conjugation length of the polyoctylthiophene was estimated to be extended over 23-31 octylthiophene rings.  相似文献   

5.
6.
Sanghoon Kim  Chul Baik  Sang Ook Kang 《Tetrahedron》2007,63(46):11436-11443
Three organic dyes, JK-41, JK-42, and JK-43 containing bis-dimethylfluoreneaniline and alkyl substituted thiophene unit are designed and synthesized. Under standard global AM 1.5 solar condition, the JK-41 sensitized cell gave a short circuit photocurrent density (Jsc) of 15.23 mA cm−2, open circuit voltage (Voc) of 0.67 V, and a fill factor of 0.67, corresponding to an overall conversion efficiency η of 7.69%. Molecular-orbital calculations of the three dyes suggest that the electron distribution moves from the aniline derivative to the cyanoacrylic acid moiety. We found that the power conversion efficiency was shown to be quite sensitive to the structural variations of alkyl substituted thiophene moiety.  相似文献   

7.
耿延候 《高分子科学》2014,32(7):844-853
Four new low-band-gap alternating copolymers (P-1, P-2, P-3 and P-4) based on electron-rich benzodithiophene and newly developed electron-deficient units, thienopyrazine or dithiadiazatrindene derivatives, were synthesized by Stille polycondensation. All polymers exhibit good solubility in common organic solvents and a broad absorption band in the visible to near-infrared regions. The film optical band gaps of the polymers are in the range of 1.28-2.07 eV and the highest occupied molecular orbital (HOMO) energy levels are in the range of-4.99 eV to -5.28 eV. Bulk heterojunction polymer solar cells (PSCs) of the polymers were fabricated with phenyl-C61-butyric acid methyl ester (PC61BM) as acceptor material, and a power conversion efficiency of 0.80% was realized with P-1 as donor material.  相似文献   

8.
Two novel organic dyes (JK-5 and JK-6) containing bis-dimethylfluorenyl amino phenyl thiophene and additional methine unit are synthesized. Nanocrystalline TiO2 dye-sensitized solar cell was fabricated using these dyes. A solar-to-electric conversion efficiency of 5.12% and 4.78% is achieved with JK-5 and JK-6, respectively.  相似文献   

9.
Lu Zhang 《Tetrahedron》2010,66(18):3318-16
Four triarylamine derivatives (XS6-9) containing N,N-dimethylaryl amine units as secondary electron-donating groups are designed and synthesized. These dyes were applied into nanocrystalline TiO2 dye-sensitized solar cells through standard operations. For a typical device the maximal monochromatic incident photon-to-current conversion efficiency (IPCE) can reach 93%, with a short-circuit photocurrent density (Jsc) 10.8 mA cm−2, an open-circuit photovoltage (Voc) 690 mV, and fill factor (FF) 0.61, which corresponds to an overall conversion efficiency of 4.54%.  相似文献   

10.
Novel organometallic conjugated polymer containing (η6-arene)Cr(CO)3 and platinum in the main chain was synthesized by dehydrohalogenation coupling reaction of (η6-1,4-diethynylbenzene)tricarbonylchromium with trans-(PBu3)2PtCl2. The polymer was soluble in common organic solvents and has the number-average molecular weight of 31,000 by GPC analysis. The polymer exhibited an absorption peak derived from π-π interaction at 358 nm in the UV-Vis spectrum, which showed a red shift of approximately 90 nm compared to that of the model compound. The photochemical ligand exchange reaction of the polymer was also investigated.  相似文献   

11.
Novel conjugated polymers containing 3,9‐carbazolylene and silylenevinylene moieties were synthesized by the hydrosilylation polymerization of 1,4‐bis(3‐ethynyl‐9‐carbazolyl)benzene ( 1 ) with various bis(hydrosilane)s or dihydrosilanes using a rhodium catalyst. Polymers with weight‐average molecular weights ranging from 5400 to 20,000 were obtained in 55–97% yields by the polyaddition with a rhodium catalyst in toluene at 25 °C for 24 h. All the polymers were soluble in CHCl3 and THF, and had predominantly trans‐structures. The polymers exhibited λmax at a longer wavelength region than 1 , and emitted fluorescence in 14–50% quantumn yields. The polymers were oxidized and reduced in the region of 0.4–1.6 V, and thermally stable up to 200 °C under air. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1815–1821, 2010  相似文献   

12.
Narrow band gap conjugated polymer zwitterions (CPZs) were synthesized by Suzuki polymerization and characterized to understand their electronic properties and utility as cathode modification layers in solar cells. The polymers were prepared from diketopyrrolopyrrole (DPP) and iso-indigo monomers containing sulfobetaine (SB) pendant groups, benefiting from an ion-rich aqueous phase in the polymerizations. UV–vis absorption spectroscopy revealed the optical energy gap value for the CPZs, ranging from 1.7 to 1.2 eV. Ultraviolet photoelectron spectroscopy of the CPZs as thin layers on Ag metal showed that the pendent zwitterions impart an interfacial dipole (Δ) to the metal and a work function reduction of ∼0.9 eV. OPVs fabricated using a conventional bulk heterojunction (BHJ) device architecture of ITO/PEDOT:PSS/(PTB7:PC71BM)/CPZ/Ag led to dramatic improvements in power conversion efficiency (PCE) values relative to devices having bare Ag cathodes (PCE < 2% for bare Ag vs. 6.7–7.7% for CPZ/Ag). The benzothiadiazole (BT)/DPP polymer denoted as PT2BTDPPSB gave an optimal PCE of 7.7% in a conventional BHJ OPV device architecture fabricated on a Ag cathode. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 327–336  相似文献   

13.
A series of novel sensitizers were successfully synthesized utilizing azobenzene as a π‐linkage unit for the D–π–A structure. A slight red shift on the absorption spectra and λonset of the sensitizers could be observed when the thienyl group was introduced to the acceptor moiety (A). In addition, replacing the donor moiety (D) from carbazole to diarylamino could lead to a negative shift (approximately 0.3 V) in the first oxidation potential. DFT calculation was also carried out and the trend of calculated HOMO–LUMO gaps was consistent to the experimental data obtained from the CV results ( DT1 < DT2 < DT3 < DT4 ). These sensitizers were then employed in dye‐sensitized solar cells to investigate their photovoltaic performances. Highest power conversion efficiency (PCE) of 0.84% was achieved for DT1 ‐based DSSC according to its most bathochromic absorption spectrum.  相似文献   

14.
A new semiconducting polymer, poly((5,5‐E‐α‐((2‐thienyl)methylene)‐2‐thiopheneacetonitrile)‐alt‐2,6‐[(1,5‐didecyloxy)naphthalene])) (PBTADN), an alternating copolymer of 2,3‐bis‐(thiophene‐2‐yl)‐acrylronitrile and didecyloxy naphthalene, is synthesized and used as an active material for organic thin film transistors (OTFTs) and organic solar cells. The incorporation of 2,3‐bis‐(thiophene‐2‐yl)‐acrylronitrile as an electron deficient group and didecyloxy naphthalene as an electron rich group resulted in a relatively low bandgap, high charge carrier mobility, and finally good photovoltaic performances of PBTADN solar cells. Because of the excellent miscibility of PBTADN and PC71BM, as confirmed by Grazing Incident X‐ray Scattering (GIXS) measurements and Transmission Electron Microscopy (TEM), homogeneous film morphology was achieved. The maximum power conversion efficiency of the PBTADN:PC71BM solar cell reached 2.9% with a Voc of 0.88 V, a short circuit current density (Jsc) of 5.6 mA/cm2, and a fill factor of 59.1%. The solution processed thin film transistor with PBTADN revealed a highest saturation mobility of 0.025 cm2/Vs with an on/off ratio of 104. The molecular weight dependence of the morphology, charge carrier mobility, and finally the photovoltaic performances were also studied and it was found that high molecular weight PBTADN has better self assembly characteristics, showing enhanced performance. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

15.
Three two-dimensional like conjugated copolymers PFSDCN,PFSDTA and PFSDCNIO,which consist of alternating fluorene and triphenylamine main chain,and different pendant acceptor groups (malononitrile,1,3-diethtyl-2-thiobarbituric acid and 2-(1,2-dihydro-1-oxoinden-3-ylidene)malononitrile) with thiophene as π-bridge,have been designed,synthesized and characterized.The structure-property relationships of the two-dimensional like conjugated copolymers were systematically investigated.The absorption spectra,band g...  相似文献   

16.
A series of soluble donor‐acceptor conjugated polymers comprising of phenothiazine donor and various benzodiazole acceptors (i.e., benzothiadiazole, benzoselenodiazole, and benzoxadiazole) sandwiched between hexyl‐thiophene linkers were designed, synthesized, and used for the fabrication of polymer solar cells (PSC). The effects of the benzodiazole acceptors on the thermal, optical, electrochemical, and photovoltaic properties of these low‐bandgap (LBG) polymers were investigated. These LBG polymers possessed large molecular weight (Mn) in the range of 3.85?5.13 × 104 with high thermal decomposition temperatures, which demonstrated broad absorption in the region of 300?750 nm with optical bandgaps of 1.80?1.93 eV. Both the HOMO energy level (?5.38 to ?5.47 eV) and LUMO energy level (?3.47 to ?3.60 eV) of the LBG polymers were within the desirable range of ideal energy level. Under 100 mW/cm2 of AM 1.5 white‐light illumination, bulk heterojunction PSC devices containing an active layer of electron donor polymers mixed with electron acceptor [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) or [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) in different weight ratios were investigated. The best performance of the PSC device was obtained by using polymer PP6DHTBT as an electron donor and PC71BM as an acceptor in the weight ratio of 1:4, and a power conversion efficiency value of 1.20%, an open‐circuit voltage (Voc) value of 0.75 V, a short‐circuit current (Jsc) value of 4.60 mA/cm2, and a fill factor (FF) value of 35.0% were achieved. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

17.
We have synthesized two conjugated polymers ( P1 , P2 ) containing alternating electron‐donating and ‐accepting units, based on N‐alkyl‐2,7‐carbazole, 4,7‐di(thiophen‐5‐yl)‐2,1,3‐benzothiadiazole and 3‐[2‐(4‐pyridyl)vinyl]thiophene units. These conjugated polymers contained different contents of pyridine units, which were incorporated to form hydrogen bonds with [6,6]‐phenyl‐C61‐butyric acid (PCBA). When these hydrogen bonding interactions were present in the polymer thin films, their thermal stability improved; deterioration, which occurred through aggregation of PCBA methyl ester after lengthy annealing times, was also suppressed. The power conversion efficiency of a device incorporating the film featuring hydrogen bonding interactions remained at 75% of the original value after thermal annealing for 5 h at 140 °C. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

18.
A hole‐injection/transport bilayer structure on an indium tin oxide (ITO) layer was fabricated using two photocrosslinkable polymers with different molecular energy levels. Two photoreactive polymers were synthesized using 2,7‐(or 3,6‐)‐dibromo‐9‐(6‐((3‐methyloxetan‐3‐yl)methoxy)hexyl)‐9H‐carbazole) and 2,4‐dimethyl‐N,N‐bis(4‐ (4,4,5,5‐tetramethyl‐1,3,2‐dioxaborolan‐2‐yl)phenyl)aniline via a Suzuki coupling reaction. When the oxetane groups were photopolymerized in the presence of a cationic photoinitiator, the photocured film showed good solvent resistance and compatibility with a poly(N‐vinylcarbazole) (PVK)‐based emitting layer. Without the use of a conventional hole injection layer (HIL) of poly(3,4‐ethylenedioxythiophene)/(polystyrenesulfonate) (PEDOT:PSS), the resulting green light‐emitting device bearing PVK: 5‐4‐tert‐butylphenyl‐1,3,4‐oxadiazole (PBD):Ir(Cz‐ppy)3 exhibited a maximum external quantum efficiency of 9.69%; this corresponds to a luminous efficiency of 29.57 cd/A for the device K‐4 configuration ITO/POx‐I/POx‐II/PVK:PBD:Ir(Cz‐ppy)3/triazole/Alq3/LiF/Al. These values are much higher than those of PLEDs using conventional PEDOT:PSS as a single HIL. The significant improvement in device efficiency is the result of suppression of the hole injection/transport properties through double‐layered photocrosslinked‐conjugated polymers. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

19.
Osawa T  Naito T  Suzuki N  Imai K  Nakanishi K  Kawakami J 《Talanta》2011,85(3):1614-1620
Contamination of the exterior surface of vials of cytostatic drugs by the drugs themselves is a potential hazard to human health. This study developed a validated method using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) for the determination of contamination of the exteriors of vials of cisplatin and carboplatin. Large Alpha® sampling swabs were employed to wipe the vial exterior. Cisplatin or carboplatin and gold(III) as an internal standard were derivatized by N,N-diethyldithiocarbamate (DDTC). Pt(DDTC)3+ and Au(DDTC)2+ were monitored by the respective transitions of m/z 639.3-490.9 and 493.0-345.0, respectively. Each separation was completed within 9 min using a 3 μm particle ODS-column. Calibration curves for cisplatin and carboplatin were linear over concentration ranges of 30-10,000 and 30-30,000 pg vial−1, respectively. The accuracies and precisions were 96.1-102.5% and within 8.2% for intra-assay and 99.6-103.3% and within 7.6% for inter-assay, respectively. Their lower limit of quantification was 30 pg vial−1. Amounts of 0.17-17.0 ng vial−1 as cisplatin and 0.48-794 ng vial−1 as carboplatin were detected from the exterior surface of the vials. This validated method using LC-ESI-MS/MS for the determination of platinum anticancer drugs is helpful for monitoring contamination of the exterior surface of drug vials.  相似文献   

20.
The potential for a simultaneous two-colour diagnostic scheme for nucleic acids operating on the basis of fluorescence resonance energy transfer (FRET) has been demonstrated. Upon ultraviolet excitation, two-colours of CdSe/ZnS quantum dots with conjugated oligonucleotide probes act as energy donors yielding FRET-sensitized acceptor emission upon hybridization with fluorophore (Cy3 and Alexa647) labeled target oligonucleotides. Energy transfer efficiencies, Förster distances, changes in quantum yield and lifetime, and signal-to-noise with respect to non-specific adsorption have been investigated. The dynamic range and limit-of-detection are tunable with the concentration of QD-DNA conjugate. The Cy3 and Alexa647 acceptor schemes can detect target from 4 to 100% or 10 to 100% of the QD-DNA conjugate concentration, respectively. Nanomolar limits of detection have been demonstrated in this paper, however, results indicate that picomolar detection limits can be achieved with standard instrumentation. The use of an intercalating dye (ethidium bromide) as an acceptor to alleviate non-specific adsorption is also described and increases signal-to-noise from S/N < 2 to S/N = 9-10. The ethidium bromide system had a dynamic range from 8 to 100% of the QD-DNA conjugate concentration and could detect target in a matrix containing an excess of non-complementary nucleic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号