首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
Thin film of CaCu3Ti4O12 (CCTO) has been deposited on Nb-doped SrTiO3(100) single crystal using pulsed laser deposition. The dielectric constant and AC conductivity of CCTO film in the metal–insulator–metal capacitor configuration over a wide temperature (80 to 500 K) and frequency (100 Hz to 1 MHz) range have been measured. The small dielectric dispersion with frequency observed in the lower temperature region (<300 K) indicates the presence of small defects in the deposited CCTO thin film. The frequency-dependent AC conductivity at lower temperature indicates the hopping conduction. The dielectric dispersion data has been analyzed in the light of both conductivity relaxation and Debye type relaxation with a distribution of relaxation times. Origin of dielectric dispersion is attributed to the distribution of barrier heights such that some charge carriers are confined between long-range potential wells associated with defects and give rise to dipolar polarization, while those carriers which do not encounter long-range potential well give rise to DC conductivity.  相似文献   

2.
Complex dielectric permittivity spectra, in the frequency range 10 MHz to 20 GHz are reported for aqueous cesium chloride (CsCl) solutions at 250C using time domain reflectometry technique. The static dielectric constant, relaxation time and conductivity have been determined using nonlinear least squares fit method. From the static dielectric constant, hydration numbers were determined by using measured solutions density at different concentrations.  相似文献   

3.

Dielectric constant, dielectric loss and AC conductivity were measured, in the frequency range 100 Hz to 5 MHz in chlorinated poly (vinyl chloride) (CPVC) before and after exposure to gamma irradiation at doses between 5.0 KGy and 50.0 KGy. The frequency dependencies of ε′, ε″ and σAC at 30 °C were investigated. A relaxation peak in the dielectric loss and a corresponding step in the dielectric constant have been observed, in the frequency ranges 103 Hz to 104 Hz. The dielectric constant ε′, dielectric loss ε″ and AC conductivity σAC are also found to increase at heating up to 100 °C. In addition the effect of gamma irradiation on the frequency dependencies of ε′, ε″ and σAC was measured at room temperature. The gamma irradiation leads to an increase in the efficiency of soft segments. Furthermore, the DC electrical conductivity of both the irradiated and non-irradiated samples was investigated. The induced electrical conductivity and the activation energy were measured, at various temperatures, as a function of gamma dose. It was found that the gamma radiation has a definite effect on the DC conductivity of the CPVC polymer.  相似文献   

4.
李盛涛  王辉  林春江  李建英 《物理学报》2013,62(8):87701-087701
由于CaCu3Ti4O12巨介电常数陶瓷的低频区直流电导较大, 本文采用模量 M"-f频谱表征与分析了低频和高频的两个松弛极化过程. 研究认为, 这两个特征峰属于晶界区Schottky 势垒耗尽层边缘深陷阱的电子松弛过程, 其中高频松弛峰起源于晶粒本征缺陷的电子松弛过程, 而低频松弛峰则为与氧空位有关的松弛极化过程. 对于CaCu3Ti4O12这类低频下具有高直流电导的陶瓷材料, 采用模量频谱能更有效地分析研究其损耗极化机理. 关键词: 3Ti4O12陶瓷')" href="#">CaCu3Ti4O12陶瓷 模量 松弛过程 电导  相似文献   

5.
An in-depth investigation of the dielectric characteristics of annealed phlogopite mica has been conducted in the frequency range 0.1 Hz–10 MHz and over the temperature range 653–873 K through the framework of dielectric permittivity, electric modulus and conductivity formalisms. These formalisms show qualitative similarities in relaxation processes. The frequency dependence of the M″ and dc conductivity is found to obey an Arrhenius law and the activation energy of the phlogopite mica calculated both from dc conductivity and the modulus spectrum is similar, indicating that same type of charge carriers are involved in the relaxation phenomena. The electric modulus and conductivity data have been fitted with the Havriliak–Negami function. Scaling of M′, M″, ac conductivity has also been performed in order to obtain insight into the relaxation mechanisms. The scaling behaviour indicates that the relaxation describes the same mechanism at different temperatures. The relaxation mechanism was also examined using the Cole–Cole approach. The study elaborates that the investigation regarding the temperature and frequency dependence of dielectric relaxation in the phlogopite mica will be helpful for various cutting edge applications of this material in electrical engineering.  相似文献   

6.
The complex perovskite oxide a barium samarium niobate (BSN) synthesized by solid-state reaction technique has single phase with cubic structure. The scanning electron micrograph of the sample shows the average grain size of BSN∼1.22 μm. The field dependence of dielectric response and loss tangent were measured in the temperature range from 323 to 463 K and in the frequency range from 50 Hz to 1 MHz. The complex plane impedance plots show the grain boundary contribution for higher value of dielectric constant in the low frequency region. An analysis of the dielectric constant (ε′) and loss tangent (tan δ) with frequency was performed assuming a distribution of relaxation times as confirmed by the scaling behaviour of electric modulus spectra. The low frequency dielectric dispersion corresponds to DC conductivity. The logarithmic angular frequency dependence of the loss peak is found to obey the Arrhenius law with an activation energy of 0.71 eV. The frequency dependence of electrical data is also analyzed in the framework of conductivity and electric modulus formalisms. Both these formalisms show qualitative similarities in relaxation times. The scaling behaviour of imaginary part of electric modulus M″ and dielectric loss spectra suggest that the relaxation describes the same mechanism at various temperatures in BSN. All the observations indicate the polydispersive relaxation in BSN.  相似文献   

7.
Electrical conductivity and dielectric relaxation studies on SO4 2? doped modified molybdo-phosphate glasses have been carried out over a wide range of composition, temperature and frequency. The d.c. conductivities which have been measured by both digital electrometer (four-probe method) and impedance analyser are comparable. The relaxation phenomenon has been rationalized using electrical modulus formalism. The use of modulus representation in dielectric relaxation studies has inherent advantages viz., experimental errors arising from the contributions of electrode-electrolyte interface capacitances are minimized. The relaxation observed in the present study is non-Debye type. The activation energies for relaxation were determined using imaginary parts of electrical modulus peaks which were close to those of the d.c. conductivity implying the involvement of similar energy barriers in both the processes. The enhanced conductivity in these glasses can be attributed to the migration of Na+, in expanded structures due to the introduction of SO4 2? ions.  相似文献   

8.
The effect of supercritical CO2 on the electrical conductivity of poly(epichlorohydrin–Ethylene oxide–Allyl glycidal ether) terpolymer is investigated using dielectric spectroscopy. Impedance measurements were carried out in the frequency range from 100–10 MHz and the temperature range of ?35–70°C with intervals of 5°C. The experimental results of the dielectric constant and the dielectric loss were fitted with the Cole–Cole equation to obtain the maximum relaxation frequencies of the different relaxation processes. As a result of the CO2 treatment process, enhancement in the polymer chain mobility without noteworthy change in the glass transition temperature was determined. In addition, the level of the DC conductivity and the dielectric strength were increased. These effects were attributed to improvement in the chain dynamics, which arises from enhancement in the parallel conformation of macromolecules.  相似文献   

9.
The electrical characteristics of a dielectric material that can be used to determine the parameters of relaxation polarization arising in a dielectric and the influence on these characteristics of the steady leakage electrical conductivity are discussed. For weak relaxation processes at high electrical conductivities, the imaginary part of impedance can be used as such a characteristic. Extrema in the impedance frequency dependence are observed at any conductivity. However, the frequency dependence of the imaginary part of impedance contains two maxima whose frequency positions depend not only on the relaxation time but on other characteristics of the dielectric as well. In addition, the temperature shifts of the extrema of these curves depend not only on the activation energy of the relaxation process but on the activation energy of the electrical conductivity as well.  相似文献   

10.
A. K. Nath  A. Kumar 《Ionics》2013,19(10):1393-1403
Ionic conductivity and transport properties of polyvinylidenefluoride–co-hexafluoropropylene– montmorillonite intercalated nanocomposite electrolytes based on ionic liquid 1-butyl-3-methylimidazolium bromide have been studied for various concentrations of montmorillonite clay. Ionic conductivity of the order of 10?3?S?cm?1 at room temperature with thermal stability up to about 235 °C has been obtained for the electrolyte system. The electrolyte system has superior properties at 5 wt% of clay loading with highly amorphous morphology as seen from selected area electron diffraction micrograph. Scanning electron microscope studies show that the electrolyte system has highly porous morphology and the ionic liquid is trapped in the pores. Dielectric properties of the electrolyte system have been studied to investigate the relaxation processes occurring in the system. Variation of real part of dielectric permittivity with frequency shows two relaxation processes occurring in the system, slow at low frequency and fast at high frequency. Kohlrausch exponential parameter has been calculated from modulus formalism, and the values show that the distribution of conductivity relaxation times becomes narrower with increasing clay loading.  相似文献   

11.
The relative effects of intrinsic and extrinsic defects on the dielectric relaxation of VO2 crystals have been investigated by measurement of the dielectric parameters of undoped crystals and crystals doped with Ti, Cr and Al. Measurements have been made in the temperature range 77–250 K and the frequency range 50–100 kHz. The dielectric data is described by a Cole-Cole distribution function with a distribution parameter α ? 0.45 which decreases with increasing temperature. However, the distribution of activation energies g(E) derived from α is almost independent of temperature. The overall dielectric relaxation behaviour is determined primarily by the intrinsic defect structure of VO2, and the effect of impurities is observed only in changes in the low frequency limiting (static) value of the dielectric constant. The same transport mechanism is found to determine the dc conductivity and the dielectric relaxation and evidence is presented that the dielectric relaxation is of dipolar origin.  相似文献   

12.
The relaxation processes of α-form nylon 1212 from 50°C up to 160°C were studied by dielectric relaxation spectroscopy (DRS) in a wide frequency range of 63 Hz to 5 MHz. The α relaxation, the electrode relaxation, and the conductivity relaxation of nylon 1212 were observed and analyzed in detail using permittivity and modulus formalism. Electrode polarization and dc conductivity were the origin of high dielectric permittivity values at low frequencies and high temperatures. The strength of the imaginary part of the electric modulus of conductivity relaxation M″ max was nearly independent of temperature. The distribution of local conductivity and relaxation time became broader with decreasing temperature.  相似文献   

13.
It is established that an increase in the reach-through electrical conductivity of a dielectric can affect the frequency characteristics of the quantity tanδ in different ways when relaxation polarization processes occur: the extrema of the frequency characteristics can be either suppressed or intensified. In the former case, relaxation processes are referred to as weak; in the latter case, they are referred to as strong. Strong processes lead to the emergence of extrema in the frequency dependence of the imaginary part of complex conductivity. The causes underlying the two polarization relaxation processes are identified.  相似文献   

14.
Single phase perovskite CaTiO3 has been synthesized by conventional solid state reaction technique. The ceramic was characterized by XRD at room temperature and its Rietveld refinement inferred orthorhombic crystal structure with the space group Pbnm. The field dependence of dielectric relaxation and conductivity was measured over a wide frequency range from room temperature to 673 K. Analysis of Nyquist plots of CaTiO3 revealed the contribution of many electrically active regions corresponding to bulk mechanism, distribution of grain boundaries and electrode processes. The dc conductivity depicted a semiconductor to metal type transition. Frequency dependence of dielectric constant (ε′) and tangent loss (tan δ) show a dispersive behavior at low frequencies and is explained on basis of Maxwell-Wagner model and Koop's theory. Both conductivity and electric modulus formalisms have been employed to study the relaxation dynamics of charge carriers. The variation of ac conductivity with frequency at different temperatures obeys the universal Jonscher's power law (σac α ωs). The values of exponent ‘s’ lie in the range 0.13 ≤ s ≤ 0.33, which in light of CBH model suggest a large polaron hopping type of conduction mechanism.  相似文献   

15.
Cadmium telluride (CdTe) nanomaterials have been synthesized by soft chemical route using mercapto ethanol as a capping agent. Crystallization temperature of the sample is investigated using differential scanning calorimeter. X-ray diffraction and transmission electron microscope measurements show that the prepared sample belongs to cubic structure with the average particle size of 20 nm. Impedance spectroscopy is applied to investigate the dielectric relaxation of the sample in a temperature range from 313 to 593 K and in a frequency range from 42 Hz to 1.1 MHz. The complex impedance plane plot has been analyzed by an equivalent circuit consisting of two serially connected R-CPE units, each containing a resistance (R) and a constant phase element (CPE). Dielectric relaxation peaks are observed in the imaginary parts of the spectra. The frequency dependence of real and imaginary parts of dielectric permittivity is analyzed using modified Cole–Cole equation. The temperature dependence relaxation time is found to obey the Arrhenius law having activation energy ~0.704 eV. The frequency dependent conductivity spectra are found to follow the power law. The frequency dependence ac conductivity is analyzed by power law.  相似文献   

16.
Nickel-doped anatase TiO2 nanoparticles have been prepared by sol-gel method. The X-ray powder diffraction study reveals that all the prepared samples have pure anatase phase tetragonal system. The average crystallite size of the prepared sample is 14 nm, when found through transmission electron microscope. A strong frequency dependence of both dielectric constant (?′) and dielectric loss (tan δ) were observed for various dopant levels at room temperature in the frequency range of 42 Hz to 5 MHz. At low frequency, the piling up of mobile charge carriers at the grain boundary produces interfacial polarization giving rise to high dielectric constant. The asymmetric shape of frequency dependence of the dielectric loss for the primary relaxation process is observed for each concentration. From the ac conductivity studies, the reduction in conductivity may arise due to the decreasing particle with the increase in Ni-dopant level.  相似文献   

17.
In the present paper, the ionic conductivity and the dielectric relaxation properties on the poly(vinyl alcohol)-CF3COONH4 polymer system have been investigated by means of impedance spectroscopy measurements over wide ranges of frequencies and temperatures. The electrolyte samples were prepared by solution casting technique. The temperature dependence of the sample’s conductivity was modeled by Arrhenius and Vogel-Tammann-Fulcher (VTF) equations. The highest conductivity of the electrolyte of 3.41×10 − 3 (Ωcm) − 1 was obtained at 423 K. For these polymer system two relaxation processes are revealed in the frequency range and temperature interval of the measurements. One is the glass transition relaxation (α-relaxation) of the amorphous region at about 353 K and the other is the relaxation associated with the crystalline region at about 423 K. Dielectric relaxation has been studied using the complex electric modulus formalism. It has been observed that the conductivity relaxation in this polymer system is highly non-exponential. From the electric modulus formalism, it is concluded that the electrical relaxation mechanism is independent of temperature for the two relaxation processes, but is dependent on composition.  相似文献   

18.
In dielectrics with high steady leakage of conductivity, the frequency–temperature dependences of the dielectric loss tangent generally allow us to determine the relaxation time and activation energy of relaxation process only when they are strong. With weak relaxation processes, there are no extrema in the frequency dependence of the dielectric loss tangent. In such cases, the parameters of the relaxation processes are initially determined from the frequency behavior of the imaginary parts of the electrical module or impedance. However, the frequency dependences of these quantities when there is electrical conduction can contain three extrema. Identifying the maxima associated with relaxation polarization therefore requires additional research.  相似文献   

19.
The relative complex dielectric function, electric modulus and alternating current electrical conductivity spectra and complex impedance plane plots of aqueous solution cast poly(ethylene oxide)–montmorillonite clay (PEO–MMT) nanocomposite films were investigated over the frequency range 20 Hz to 1 MHz at ambient temperature. The intercalated and exfoliated structures of nanoclay dispersed in PEO matrix were recognized by the significant change in real part of dielectric function with clay concentration in the range 0%–20 wt%. The relaxation times corresponding to PEO chain segmental motion and ionic conduction relaxation processes were used to explore the interactions compatibility between PEO molecules and the dispersed MMT clay nanoplatelets and their effect on PEO chain dynamics. Real part of conductivity spectra of these nanocomposites over five decades of frequency has nonlinear behavior, which is influenced by the MMT clay concentration. The complex impedance plane plots confirm the bulk properties of these nanocomposites over the experimental frequency range.  相似文献   

20.
Alternating current(AC) conductivity and dielectric properties of thermally evaporated Au/Pt OEP/Au thin films are investigated each as a function of temperature(303 K–473 K) and frequency(50 Hz–5 MHz).The frequency dependence of AC conductivity follows the Jonscher universal dynamic law.The AC-activation energies are determined at different frequencies.It is found that the correlated barrier hopping(CBH) model is the dominant conduction mechanism.The variation of the frequency exponent s with temperature is analyzed in terms of the CBH model.Coulombic barrier height Wm,hopping distance Rω,and the density of localized states N(EF) are valued at different frequencies.Dielectric constant ε_1(ω,T) and dielectric loss ε_2(ω,T) are discussed in terms of the dielectric polarization process.The dielectric modulus shows the non-Debye relaxation in the material.The extracted relaxation time by using the imaginary part of modulus(M')is found to follow the Arrhenius law.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号