首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
We examine classes of extremal graphs for the inequality γ(G)?|V|-max{d(v)+βv(G)}, where γ(G) is the domination number of graph G, d(v) is the degree of vertex v, and βv(G) is the size of a largest matching in the subgraph of G induced by the non-neighbours of v. This inequality improves on the classical upper bound |V|-maxd(v) due to Claude Berge. We give a characterization of the bipartite graphs and of the chordal graphs that achieve equality in the inequality. The characterization implies that the extremal bipartite graphs can be recognized in polynomial time, while the corresponding problem remains NP-complete for the extremal chordal graphs.  相似文献   

2.
A connected matching in a graph is a collection of edges that are pairwise disjoint but joined by another edge of the graph. Motivated by applications to Hadwiger’s conjecture, Plummer, Stiebitz, and Toft (2003) introduced connected matchings and proved that, given a positive integer k, determining whether a graph has a connected matching of size at least k is NP-complete. Cameron (2003) proved that this problem remains NP-complete on bipartite graphs, but can be solved in polynomial-time on chordal graphs. We present a polynomial-time algorithm that finds a maximum connected matching in a chordal bipartite graph. This includes a novel edge-without-vertex-elimination ordering of independent interest. We give several applications of the algorithm, including computing the Hadwiger number of a chordal bipartite graph, solving the unit-time bipartite margin-shop scheduling problem in the case in which the bipartite complement of the precedence graph is chordal bipartite, and determining–in a totally balanced binary matrix–the largest size of a square sub-matrix that is permutation equivalent to a matrix with all zero entries above the main diagonal.  相似文献   

3.
A k-cluster in a graph is an induced subgraph on k vertices which maximizes the number of edges. Both the k-cluster problem and the k-dominating set problem are NP-complete for graphs in general. In this paper we investigate the complexity status of these problems on various sub-classes of perfect graphs. In particular, we examine comparability graphs, chordal graphs, bipartite graphs, split graphs, cographs and κ-trees. For example, it is shown that the k-cluster problem is NP-complete for both bipartite and chordal graphs and the independent k-dominating set problem is NP-complete for bipartite graphs. Furthermore, where the k-cluster problem is polynomial we study the weighted and connected versions as well. Similarly we also look at the minimum k-dominating set problem on families which have polynomial k-dominating set algorithms.  相似文献   

4.
Satoshi Murai 《代数通讯》2013,41(10):3071-3094
In the present article, for bipartite graphs and chordal graphs, their exterior algebraic shifted graph and their symmetric algebraic shifted graph are studied. First, we will determine the symmetric algebraic shifted graph of complete bipartite graphs. It turns out that for a ≥ 3 and b ≥ 3, the exterior algebraic shifted graph of the complete bipartite graph K a,b of size a, b is different from the symmetric algebraic shifted graph of K a,b . Second, we will show that the exterior algebraic shifted graph of any chordal graph G coincides with the symmetric algebraic shifted graph of G. In addition, it will be shown that the exterior algebraic shifted graph of any chordal graph G is equal to some combinatorial shifted graph of G.  相似文献   

5.
A set of vertices D of a graph G is geodetic if every vertex of G lies on a shortest path between two not necessarily distinct vertices in D. The geodetic number of G is the minimum cardinality of a geodetic set of G.We prove that it is NP-complete to decide for a given chordal or chordal bipartite graph G and a given integer k whether G has a geodetic set of cardinality at most k. Furthermore, we prove an upper bound on the geodetic number of graphs without short cycles and study the geodetic number of cographs, split graphs, and unit interval graphs.  相似文献   

6.
Haiko Müller 《Order》1990,7(1):11-21
The investigation of alternating cycle-free matchings is motivated by the Jump-number problem for partially ordered sets and the problem of counting maximum cardinality matchings in hexagonal systems.We show that the problem of deciding whether a given chordal bipartite graph has an alternating cycle-free matching of a given cardinality is NP-complete. A weaker result, for bipartite graphs only, has been known for some time. Also, the alternating cycle-free matching problem remains NP-complete for strongly chordal split graphs of diameter 2.In contrast, we give algorithms to solve the alternating cycle-free matching problem in polynomial time for bipartite distance hereditary graphs (time O(m 2) on graphs with m edges) and distance hereditary graphs (time O(m 5)).  相似文献   

7.
On the 2-rainbow domination in graphs   总被引:2,自引:0,他引:2  
The concept of 2-rainbow domination of a graph G coincides with the ordinary domination of the prism GK2. In this paper, we show that the problem of deciding if a graph has a 2-rainbow dominating function of a given weight is NP-complete even when restricted to bipartite graphs or chordal graphs. Exact values of 2-rainbow domination numbers of several classes of graphs are found, and it is shown that for the generalized Petersen graphs GP(n,k) this number is between ⌈4n/5⌉ and n with both bounds being sharp.  相似文献   

8.
A graph is polar if the vertex set can be partitioned into A and B in such a way that the subgraph induced by A is a complete multipartite graph and the subgraph induced by B is a disjoint union of cliques. Polar graphs are a common generalization of bipartite, cobipartite, and split graphs. However, recognizing polar graphs is an NP-complete problem in general. This led to the study of the polarity of special classes of graphs such as cographs and chordal graphs, cf. Ekim et al. (2008) [7] and [5]. In this paper, we study the polarity of line graphs and call a graph line-polar if its line graph is polar. We characterize line-polar bipartite graphs in terms of forbidden subgraphs. This answers a question raised in the fist reference mentioned above. Our characterization has already been used to develop a linear time algorithm for recognizing line-polar bipartite graphs, cf. Ekim (submitted for publication) [6].  相似文献   

9.
Associated to a simple undirected graph G is a simplicial complex ΔG whose faces correspond to the independent sets of G. We call a graph G shellable if ΔG is a shellable simplicial complex in the non-pure sense of Björner-Wachs. We are then interested in determining what families of graphs have the property that G is shellable. We show that all chordal graphs are shellable. Furthermore, we classify all the shellable bipartite graphs; they are precisely the sequentially Cohen-Macaulay bipartite graphs. We also give a recursive procedure to verify if a bipartite graph is shellable. Because shellable implies that the associated Stanley-Reisner ring is sequentially Cohen-Macaulay, our results complement and extend recent work on the problem of determining when the edge ideal of a graph is (sequentially) Cohen-Macaulay. We also give a new proof for a result of Faridi on the sequentially Cohen-Macaulayness of simplicial forests.  相似文献   

10.
We prove that a triangle-free graph G is a tolerance graph if and only if there exists a set of consecutively ordered stars that partition the edges of G. Since tolerance graphs are weakly chordal, a tolerance graph is bipartite if and only if it is triangle-free. We, therefore, characterize those tolerance graphs that are also bipartite. We use this result to show that in general, the class of interval bigraphs properly contains tolerance graphs that are triangle-free (and hence bipartite).  相似文献   

11.
The exact weighted independent set (EWIS) problem consists in determining whether a given vertex-weighted graph contains an independent set of given weight. This problem is a generalization of two well-known problems, the NP-complete subset sum problem and the strongly NP-hard maximum weight independent set (MWIS) problem. Since the MWIS problem is polynomially solvable for some special graph classes, it is interesting to determine the complexity of this more general EWIS problem for such graph classes.We focus on the class of perfect graphs, which is one of the most general graph classes where the MWIS problem can be solved in polynomial time. It turns out that for certain subclasses of perfect graphs, the EWIS problem is solvable in pseudo-polynomial time, while on some others it remains strongly NP-complete. In particular, we show that the EWIS problem is strongly NP-complete for bipartite graphs of maximum degree three, but solvable in pseudo-polynomial time for cographs, interval graphs and chordal graphs, as well as for some other related graph classes.  相似文献   

12.
研究两类广义控制问题的复杂性: k-步长控制问题和k-距离控制问题, 证明了k-步长控制问题在弦图和平面二部图上都是NP-完全的. 作为上述结果的推论, 给出了k-距离控制问题在弦图和二部图上NP-完全性的新的证明, 并进一步证明了k-距离控制问题在平面二部图上也是NP-完全的.  相似文献   

13.
An (h,s,t)-representation of a graph G consists of a collection of subtrees of a tree T, where each subtree corresponds to a vertex in G, such that (i) the maximum degree of T is at most h, (ii) every subtree has maximum degree at most s, (iii) there is an edge between two vertices in the graph G if and only if the corresponding subtrees have at least t vertices in common in T. The class of graphs that have an (h,s,t)-representation is denoted by [h,s,t]. It is well known that the class of chordal graphs corresponds to the class [3, 3, 1]. Moreover, it was proved by Jamison and Mulder that chordal graphs correspond to orthodox-[3, 3, 1] graphs defined below.In this paper, we investigate the class of [h,2,t] graphs, i.e., the intersection graphs of paths in a tree. The [h,2,1] graphs are also known as path graphs [F. Gavril, A recognition algorithm for the intersection graphs of paths in trees, Discrete Math. 23 (1978) 211-227] or VPT graphs [M.C. Golumbic, R.E. Jamison, Edge and vertex intersection of paths in a tree, Discrete Math. 55 (1985) 151-159], and [h,2,2] graphs are known as the EPT graphs. We consider variations of [h,2,t] by three main parameters: h, t and whether the graph has an orthodox representation. We give the complete hierarchy of relationships between the classes of weakly chordal, chordal, [h,2,t] and orthodox-[h,2,t] graphs for varied values of h and t.  相似文献   

14.
Given a graph G and an integer k≥0, the NP-complete Induced Matching problem asks whether there exists an edge subset M of size at least k such that M is a matching and no two edges of M are joined by an edge of G. The complexity of this problem on general graphs, as well as on many restricted graph classes has been studied intensively. However, other than the fact that the problem is W[1]-hard on general graphs, little is known about the parameterized complexity of the problem in restricted graph classes. In this work, we provide first-time fixed-parameter tractability results for planar graphs, bounded-degree graphs, graphs with girth at least six, bipartite graphs, line graphs, and graphs of bounded treewidth. In particular, we give a linear-size problem kernel for planar graphs.  相似文献   

15.
For a given graph G=(V,E), the interval completion problem of G is to find an edge set F such that the supergraph H=(V,EF) of G is an interval graph and |F| is minimum. It has been shown that it is equivalent to the minimum sum cut problem, the profile minimization problem and a kind of graph searching problems. Furthermore, it has applications in computational biology, archaeology, and clone fingerprinting. In this paper, we show that it is NP-complete on split graphs and propose an efficient algorithm on primitive starlike graphs.  相似文献   

16.
The problem of recognizing cover-incomparability graphs (i.e. the graphs obtained from posets as the edge-union of their covering and incomparability graph) was shown to be NP-complete in general [J. Maxová, P. Pavlíkova, A. Turzík, On the complexity of cover-incomparability graphs of posets, Order 26 (2009) 229-236], while it is for instance clearly polynomial within trees. In this paper we concentrate on (classes of) chordal graphs, and show that any cover-incomparability graph that is a chordal graph is an interval graph. We characterize the posets whose cover-incomparability graph is a block graph, and a split graph, respectively, and also characterize the cover-incomparability graphs among block and split graphs, respectively. The latter characterizations yield linear time algorithms for the recognition of block and split graphs, respectively, that are cover-incomparability graphs.  相似文献   

17.
For a finite undirected graph G=(V,E) and positive integer k≥1, an edge set ME is a distance-k matching if the pairwise distance of edges in M is at least k in G. For k=1, this gives the usual notion of matching in graphs, and for general k≥1, distance-k matchings were called k-separated matchings by Stockmeyer and Vazirani. The special case k=2 has been studied under the names induced matching (i.e., a matching which forms an induced subgraph in G) by Cameron and strong matching by Golumbic and Laskar in various papers.Finding a maximum induced matching is NP-complete even on very restricted bipartite graphs and on claw-free graphs but it can be done efficiently on various classes of graphs such as chordal graphs, based on the fact that an induced matching in G corresponds to an independent vertex set in the square L(G)2 of the line graph L(G) of G which, by a result of Cameron, is chordal for any chordal graph G.We show that, unlike for k=2, for a chordal graph G, L(G)3 is not necessarily chordal, and finding a maximum distance-3 matching, and more generally, finding a maximum distance-(2k+1) matching for k≥1, remains NP-complete on chordal graphs. For strongly chordal graphs and interval graphs, however, the maximum distance-k matching problem can be solved in polynomial time for every k≥1. Moreover, we obtain various new results for maximum induced matchings on subclasses of claw-free graphs.  相似文献   

18.
For a chordal graph G=(V,E), we study the problem of whether a new vertex uV and a given set of edges between u and vertices in V can be added to G so that the resulting graph remains chordal. We show how to resolve this efficiently, and at the same time, if the answer is no, specify a maximal subset of the proposed edges that can be added along with u, or conversely, a minimal set of extra edges that can be added in addition to the given set, so that the resulting graph is chordal. In order to do this, we give a new characterization of chordal graphs and, for each potential new edge uv, a characterization of the set of edges incident to u that also must be added to G along with uv. We propose a data structure that can compute and add each such set in O(n) time. Based on these results, we present an algorithm that computes both a minimal triangulation and a maximal chordal subgraph of an arbitrary input graph in O(nm) time, using a totally new vertex incremental approach. In contrast to previous algorithms, our process is on-line in that each new vertex is added without reconsidering any choice made at previous steps, and without requiring any knowledge of the vertices that might be added subsequently.  相似文献   

19.
We show that if G is a bipartite graph with no induced cycles on exactly 6 vertices, then the minimum number of chain subgraphs of G needed to cover E(G) equals the chromatic number of the complement of the square of line graph of G. Using this, we establish that for a chordal bipartite graph G, the minimum number of chain subgraphs of G needed to cover E(G) equals the size of a largest induced matching in G, and also that a minimum chain subgraph cover can be computed in polynomial time. The problems of computing a minimum chain cover and a largest induced matching are NP-hard for general bipartite graphs. Finally, we show that our results can be used to efficiently compute a minimum chain subgraph cover when the input is an interval bigraph.  相似文献   

20.
The boxicity of a graph G is defined as the minimum integer k such that G is an intersection graph of axis-parallel k-dimensional boxes. Chordal bipartite graphs are bipartite graphs that do not contain an induced cycle of length greater than 4. It was conjectured by Otachi, Okamoto and Yamazaki that chordal bipartite graphs have boxicity at most 2. We disprove this conjecture by exhibiting an infinite family of chordal bipartite graphs that have unbounded boxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号