首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Slender body theory facilitates computational simulations of thin fibers immersed in a viscous fluid by approximating each fiber using only the geometry of the fiber centerline curve and the line force density along it. However, it has been unclear how well slender body theory actually approximates Stokes flow about a thin but truly three-dimensional fiber, in part due to the fact that simply prescribing data along a 1D curve does not result in a well-posed boundary value problem for the Stokes equations in 3 . Here, we introduce a PDE problem to which slender body theory (SBT) provides an approximation, thereby placing SBT on firm theoretical footing. The slender body PDE is a new type of boundary value problem for Stokes flow where partial Dirichlet and partial Neumann conditions are specified everywhere along the fiber surface. Given only a 1D force density along a closed fiber, we show that the flow field exterior to the thin fiber is uniquely determined by imposing a fiber integrity condition: the surface velocity field on the fiber must be constant along cross sections orthogonal to the fiber centerline. Furthermore, a careful estimation of the residual, together with stability estimates provided by the PDE well-posedness framework, allows us to establish error estimates between the slender body approximation and the exact solution to the above problem. The error is bounded by an expression proportional to the fiber radius (up to logarithmic corrections) under mild regularity assumptions on the 1D force density and fiber centerline geometry. © 2019 Wiley Periodicals, Inc.  相似文献   

2.
We study the equations of flow of an electrically conductive magnetic fluid, when the fluid is subjected to the action of an external applied magnetic field. The system is formed by the incompressible Navier–Stokes equations, the magnetization relaxation equation of Bloch type and the magnetic induction equation. The system takes into account the Kelvin and Lorentz force densities. We prove the local-in-time existence of the unique strong solution to the system equipped with initial and boundary conditions. We also establish a blow-up criterion for the local strong solution.  相似文献   

3.
本文对非定常的Stokes方程的初边值问题证明了Phragmen-Lindelof二择性原理,即证明Stokes流函数的能量,随着与带状区域有限端距离的增加必定或者按指数率增长或者按指数率衰减.对能量衰减情况建立了Stokes流速度的最大模的点点估计.并提出求全能量上界的方法.  相似文献   

4.
The asymptotic behaviour of a Stokes flow with Tresca free boundary friction conditions when one dimension of the fluid domain tends to zero is studied. A specific Reynolds equation associated with variational inequalities is obtained and uniqueness is proved.  相似文献   

5.
We consider optimal shape design in Stokes flow using $H^1$ shape gradient flows based on the distributed Eulerian derivatives. MINI element is used for discretizations of Stokes equation and Galerkin finite element is used for discretizations of distributed and boundary $H^1$ shape gradient flows. Convergence analysis with a priori error estimates is provided under general and different regularity assumptions. We investigate the performances of shape gradient descent algorithms for energy dissipation minimization and obstacle flow. Numerical comparisons in 2D and 3D show that the distributed $H^1$ shape gradient flow is more accurate than the popular boundary type. The corresponding distributed shape gradient algorithm is more effective.  相似文献   

6.
Under oscillatory Stokes flow, dynamic permeability of assemblage of soft spherical particles is derived. For the bed of soft particles, the fluid‐particle system is represented as an assemblage of uniform permeable spheres fixed in space. Each sphere, with a surrounding envelope of fluid, is uncoupled from the system and considered separately. This model is popularly known as cell model. Oscillatory Stokes equations are employed inside the fluid envelope, and oscillatory Brinkman equations are used inside the porous region. Four known boundary conditions namely: Happel's, Kuwabara's, Kvashnin's, and Cunningham's are considered on the outer boundary and results are compared. The behavior of dynamic permeability is analyzed with various parameters such as Darcy number (Da), frequency parameter (?), porosity (φ), and viscosity ratio (δ). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
The problem of determining the axisymmetric Stokes flow past an arbitrary body, the boundary shape of which can be represented by an analytic function, is examined by developing an exact method. An appropriate nonorthogonal coordinate system is introduced, and it is shown that the Hilbert space to which the stream function belongs is spanned by the set of Gegenbauer polynomials based on the physical argument that the drag on a body should be finite. The partial differential equation of the original problem is then reduced to two simultaneous vector differential equations. By the truncation of this infinite-dimensional system to the one-dimensional subspace, an explicit analytic solution to the Stokes equation valid for all bodies in question is obtained as a first approximation.  相似文献   

8.
We consider the Navier–Stokes equations in a half-plane with a drift term parallel to the boundary and a small source term of compact support. We provide detailed information on the behavior of the velocity and the vorticity at infinity in terms of an asymptotic expansion at large distances from the boundary. The expansion is universal in the sense that it only depends on the source term through some constants. The expansion also applies to the problem of an exterior flow past a small body moving at constant velocity parallel to the boundary, and can be used as an artificial boundary condition on the edges of truncated domains for numerical simulations.  相似文献   

9.
The Schwarz alternating method can be used to solve elliptic boundary value problems on domains which consist of two or more overlapping subdomains. The solution is approximated by an infinite sequence of functions which results from solving a sequence of elliptic boundary value problems in each of the subdomains. The full potential equation is derived from the Navier–Stokes equations assuming the fluid is compressible, inviscid, irrotational and isentropic. It is being used by the aircraft industry to model flow over an airfoil or even an entire aircraft. This paper shows that the additive and multiplicative versions of the Schwarz alternating method, when applied to the full potential equation in three dimensions, converge to the true solution geometrically. The assumptions are that the initial guess and the true solution are everywhere subsonic. We use the convergence proof by Tai and Xu and modify it for certain closed convex subsets.  相似文献   

10.
The existence of a generalized weak solution is proved for the nonstationary problem of motion of a rigid body in the flow of a viscous incompressible fluid filling a cylindrical pipe of arbitrary cross-section. The fluid flow conforms to the Navier–Stokes equations and tends to the Poiseuille flow at infinity. The body moves in accordance with the laws of classical mechanics under the influence of the surrounding fluid and the gravity force directed along the cylinder. Collisions of the body with the boundary of the flow domain are not admitted and, by this reason, the problem is considered until the body approaches the boundary.  相似文献   

11.
对具有粘滑混合边界条件的平面边界,建立一个Stokes流动的一般性定理,利用双调和函数A与调和函数B,表示了3维Stokes流动的速度场和压力场.关于无滑动平面边界前Stokes流动的早期定理,成为该一般性定理的一个特例.进一步地,从一般性定理导出了一个推论,根据该Stokes流函数,给出了粘滑边界条件时刚性平面轴对称Stokes流动问题的解,得到了流体作用在边界上的牵引力和扭矩公式.给出了一个说明性的例子.  相似文献   

12.
In this paper, we consider the stabilization of the nonstationary incompressible Navier–Stokes equations around a stationary solution by a boundary linear feedback control. The feedback operator is obtained from the solution of the algebraic Bernoulli equation associated with the penalized linearized Navier–Stokes equations around an unstable stationary solution and is used to locally stabilize the original nonlinear equations. We give the explicit factorized form of the stabilizing solution of the algebraic Bernoulli equation. The numerical effectiveness of this approach is demonstrated by stabilizing the vortex shedding behind a circular obstacle. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a simple shear flow in a half-space, which has interesting properties from the point of view of boundary regularity, is described. It is a solution with a bounded velocity field to both the homogeneous Stokes system and the Navier–Stokes equation, and satisfies the homogeneous initial and boundary conditions. The gradient of the solution may become unbounded near the boundary. The example significantly simplifies an earlier construction by K. Kang, and shows that the boundary estimates obtained in a recent paper by the first author are sharp. Bibliography: 4 titles.  相似文献   

14.
The paper deals with theoretical analysis of non‐stationary incompressible flow through a cascade of profiles. The initial‐boundary value problem for the Navier–Stokes system is formulated in a domain representing the exterior to an infinite row of profiles, periodically spaced in one direction. Then the problem is reformulated in a bounded domain of the form of one space period and completed by the Dirichlet boundary condition on the inlet and the profile, a suitable natural boundary condition on the outlet and periodic boundary conditions on artificial cuts. We present a weak formulation and prove the existence of a weak solution. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Couette-Taylor流的谱Galerkin逼近   总被引:2,自引:0,他引:2  
利用谱方法对轴对称的旋转圆柱间的Couette-Taulor流进行数值模拟.首先给出Navier-Stokes方程流函数形式,利用Couette流把边界条件齐次化.其次给出Stokes算子的特征函数的解析表达式,证明其正交性,并对特征值进行估计.最后利用Stokes算子的特征函数作为逼近子空间的基函数,给出谱Galerkin逼近方程的表达式.证明了Navier-Stokes方程非奇异解的谱Galerkin逼近的存在性、唯一性和收敛性,给出了解谱Galerkin逼近的误差估计,并展示了数值计算结果.  相似文献   

16.
We consider a stationary incompressible Navier–Stokes flow in a 3D exterior domain, with nonzero velocity at infinity. In order to approximate this flow, we use the stabilized P1–P1 finite element method proposed by Rebollo (Numer Math 79:283–319, 1998). Following an approach by Guirguis and Gunzburger (Model Math Anal Numer 21:445–464, 1987), we apply this method to the Navier–Stokes system with Oseen term in a truncated exterior domain, under a pointwise boundary condition on the artificial boundary. This leads to a discrete problem whose solution approximates the exterior flow, as is shown by error estimates.  相似文献   

17.
A stationary system of Stokes and Navier-Stokes equations describing the flow of a homogeneous incompressible fluid in a bounded domain is considered. The vector of the flow velocity and a finite number of nonlocal conditions are defined at a part of the domain boundary. It is proved that, in the linear case, the problem has at least one stable solution. In the nonlinear case, the local solvability of the problem is proved.  相似文献   

18.
In this article we analyze the well‐posedness (unique solvability, stability, and Céa's estimate) of a family of Galerkin schemes for the coupling of fluid flow with porous media flow. Flows are governed by the Stokes and Darcy equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers—Joseph—Saffman law. We consider the usual primal formulation in the Stokes domain and the dual‐mixed one in the Darcy region, which yields a compact perturbation of an invertible mapping as the resulting operator equation. We then apply a classical result on projection methods for Fredholm operators of index zero to show that use of any pair of stable Stokes and Darcy elements implies the well‐posedness of the corresponding Stokes—Darcy Galerkin scheme. This extends previous results showing well‐posedness only for Bernardi—Raugel and Raviart—Thomas elements. In addition, we show that under somewhat more demanding hypotheses, an alternative approach that makes no use of compactness arguments can also be applied. Finally, we provide several numerical results illustrating the good performance of the Galerkin method for different geometries of the problem using the MINI element and the Raviart—Thomas subspace of lowest order. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 27: 721–748, 2011  相似文献   

19.
We study coupled motion of a 1-D closed elastic string immersed in a 2-D Stokes flow, known as the Stokes immersed boundary problem in two dimensions. Using the fundamental solution of the Stokes equation and the Lagrangian coordinate of the string, we write the problem into a contour dynamic formulation, which is a nonlinear nonlocal equation solely keeping track of evolution of the string configuration. We prove existence and uniqueness of local-in-time solution starting from an arbitrary initial configuration that is an H5/2-function in the Lagrangian coordinate satisfying the so-called well-stretched assumption. We also prove that when the initial string configuration is sufficiently close to an equilibrium, which is an evenly parametrized circular configuration, then a global-in-time solution uniquely exists and it will converge to an equilibrium configuration exponentially as t → + ∞. The technique in this paper may also apply to the Stokes immersed boundary problem in three dimensions. © 2018 Wiley Periodicals, Inc.  相似文献   

20.
The flow generated by a small rotating circular cylinder at the center of a corrugated outer cylinder is considered. By using a Stokes expansion, the first order correction in the Reynolds numberR is found for the creeping flow solution. An approximate critical Reynolds numberR c is found at which separation appears, and it is expressed in terms of the boundary parameters. Separation is found to occur in the concave regions of the boundary skewed opposite to the direction of rotation of the inner cylinder. By partially solving for the second order correction in the Stokes expansion, it is found that an increase inR causes an increase in the torque exerted on the outer boundary.This work was supported in part by a grant from NSERC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号