首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the adsorption and decomposition of thiophene (C4H4S) on Ge(100) using scanning tunneling microscopy (STM), high-resolution core-level photoemission spectroscopy (HRPES), and density functional theory (DFT) calculation. Analysis of S 2p core-level spectra reveals three adsorption geometries, which we assign to a Ge-S dative bonding state, a [4 + 2] cycloaddition bonding state, and a decomposed bonding state (desulfurization reaction product). Furthermore, we found that the number ratio of the three adsorption geometries depended on the molecular coverage and the annealing temperature. At low coverages, the kinetically favorable dative bonding state is initially formed at room temperature. As the molecular coverage increases, thermodynamically stable [4 + 2] cycloaddition reaction products are additionally produced. In addition, we found that as the surface temperature increased, the [4 + 2] cycloaddition reaction product either possibly desorbed as molecular thiophene or decomposed to form a metallocycle-like species (C4H4Ge2) and a sulfide (Ge2S). We systematically elucidate the changes in the bonding states of adsorbed thiophene on Ge(100) according to the thiophene coverage and annealing temperature.  相似文献   

2.
A combined experimental and theoretical study of a model system of multifunctional unsaturated ketones, including ethyl vinyl ketone (EVK), 2-cyclohexen-1-one, and 5-hexen-2-one, on the Si(100)-2 x 1 and Ge(100)-2 x 1 surfaces was performed in order to probe the factors controlling the competition and selectivity of organic reactions on clean semiconductor surfaces. Multiple internal reflection infrared spectroscopy data and density functional theory calculations indicate that EVK and 2-cyclohexen-1-one undergo selective [4 + 2] hetero-Diels-Alder and [4 + 2] trans cycloaddition reactions on the Ge(100)-2 x 1 surface at room temperature. In contrast, on the Si(100)-2 x 1 surface, evidence is seen for significant ene and possibly [2 + 2] C=O cycloaddition side products. The greater selectivity of these compounds on Ge(100) versus Si(100) is explained by differences between the two surfaces in both thermodynamic factors and kinetic factors. With 5-hexen-2-one, for which [4 + 2] cycloaddition is not possible, a small [2 + 2] C=C cycloaddition product is observed on Ge(100) and possibly Si(100), even though the [2 + 2] C=C transition state is calculated to be the highest barrier reaction by several kilocalories per mole. The results suggest that, due to the high reactivity of clean semiconductor surfaces, thermodynamic selectivity and control will play important roles in their selective functionalization, favoring the use of Ge for selective attachment of multifunctional organics.  相似文献   

3.
We have experimentally investigated bonding of the nitrile functional group (R-Ctbd1;N:) on the Ge(100)-2x1 surface with multiple internal reflection infrared spectroscopy. Density functional theory calculations are used to help explain trends in the data. Several probe molecules, including acetonitrile, 2-propenenitrile, 3-butenenitrile, and 4-pentenenitrile, were studied to elucidate the factors controlling selectivity and competition on this surface. It is found that acetonitrile does not react on the Ge(100)-2x1 surface at room temperature, a result that can be understood with thermodynamic and kinetic arguments. A [4+2] cycloaddition product through the conjugated pi system and a [2+2] C=C cycloaddition product through the alkene are found to be the dominant surface adducts for the multifunctional molecule 2-propenenitrile. These two surface products are evidenced, respectively, by an extremely intense nu(C=C=N), or ketenimine stretch, at 1954 cm(-)(1) and the nu(Ctbd1;N) stretch near 2210 cm(-)(1). While the non-conjugated molecules 3-butenenitrile and 4-pentenenitrile are not expected to form a [4+2] cycloaddition product, both show vibrational modes near 1954 cm(-)(1). Additional investigation suggests that 3-butenenitrile can isomerize to 2-butenenitrile, a conjugated nitrile, before introduction into the vacuum chamber, explaining the presence of the vibrational modes near 1954 cm(-)(1). Pathways directly involving only the nitrile functional group are thermodynamically unfavorable at room temperature on Ge(100)-2x1, demonstrating that this functional group may prove useful as a vacuum-compatible protecting group.  相似文献   

4.
The adsorption of pyridine onto the Ge(100) surface has been studied using both real-time scanning tunneling microscopy (STM) and ab initio pseudopotential density functional calculations. The results show that pyridine molecules adsorb on the electron-deficient down-Ge atoms of the Ge=Ge dimers via Ge-N dative bonding, with the pyridine ring tilted to the surface. The electron-rich up-Ge atoms remaining after adsorption of pyridine induce an asymmetric dimer row, which is mainly reconstructed to the c(4 x 2) structure. At pyridine coverage of 0.25 ML, the adsorbed pyridine molecules form a perfectly ordered monolayer. The entire Ge substrate underlying this organic monolayer rearranges into the c(4 x 2) structure.  相似文献   

5.
The adsorption and decomposition of water on Ge(100) have been investigated using real-time scanning tunneling microscopy (STM) and density-functional theory (DFT) calculations. The STM results revealed two distinct adsorption features of H2O on Ge(100) corresponding to molecular adsorption and H-OH dissociative adsorption. In the molecular adsorption geometry, H2O molecules are bound to the surface via Ge-O dative bonds between the O atom of H2O and the electrophilic down atom of the Ge dimer. In the dissociative adsorption geometry, the H2O molecule dissociates into H and OH, which bind covalently to a Ge-Ge dimer on Ge(100) in an H-Ge-Ge-OH configuration. The DFT calculations showed that the dissociative adsorption geometry is more stable than the molecular adsorption geometry. This finding is consistent with the STM results, which showed that the dissociative product becomes dominant as the H2O coverage is increased. The simulated STM images agreed very well with the experimental images. In the real-time STM experiments, we also observed a structural transformation of the H2O molecule from the molecular adsorption to the dissociative adsorption geometry.  相似文献   

6.
The adsorption of pyrimidine onto Ge(100) surfaces has been investigated using real-time scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), and density-functional theory (DFT) calculations. Our results show that the adsorbed pyrimidine molecules are tilted about 40 degrees with respect to the Ge surface, and through a Lewis acid-base reaction form bridges between the down-Ge atoms of neighboring Ge dimer rows by double Ge-N dative bonding without loss of aromaticity. For coverages of pyrimidine up to 0.25 ML, a well-ordered c(4x2) structure results from states that appear in STM micrographs as oval-shaped protrusions, which correspond to pyrimidine molecules datively adsorbed on every other dimer. However, above 0.25 ML, the oval-shaped protrusions gradually change into brighter zigzag lines. At 0.50 ML, a p(2x2) structure results from the states that appear in STM as zigzag lines. The zigzag lines are formed by the attachment of pyrimidine molecules to the down-Ge atoms of every Ge dimer. However, the unstable p(2x2) structure eventually reconstructs into a c(4x2) structure due to steric hindrance between the adsorbed pyrimidine molecules after stopping the exposure of pyrimidine to the surface.  相似文献   

7.
The reaction pathways of 1-propanethiol, 1-propanol, and propylamine molecules, containing a propyl moiety, on a Ge(100) surface were investigated using high-resolution photoemission spectroscopy (HRPES) experiments and density functional theory (DFT) calculations. Upon analysis of the HRPES data, the adsorption of 1-propanethiol and 1-propanol was found to occur through a dissociation reaction, whereas that of propylamine took place via N dative bonding at room temperature. On the basis of our DFT results, adsorption geometries and transition states for each of these molecules on the Ge(100) surface were confirmed. Systematic studies of S-, O-, and N-containing molecules, composed of an identical propyl moiety, on the Ge(100) surface provide insight into the adsorption mechanism of aliphatic molecules containing alkyl chains on the Ge(100) surface.  相似文献   

8.
The surface chemistry of three representative aromatic molecules containing two different heteroatoms isoxazole, oxazole, and thiazole on Si(111)-7 x 7 was studied. These molecules exhibit different competition and selectivity for multiple reaction channels with this surface, determined by a combination of molecular electronic and structural factors. Isoxazole is chemically attached to Si(111)-7 x 7 through both dative-bond addition and [4 + 2]-like cycloaddition. Oxazole chemisorbs on Si(111)-7 x 7 through both dative-bond addition and [2 + 2]-like cycloaddition. The kinetically favored [2 + 2]-like cycloadduct at low temperature is thermally converted into the thermodynamically preferred [4 + 2]-like cycloadduct at a temperature higher than 300 K. Thiazole is chemically bound to this surface only through formation of a Si...N dative bond at low temperature. This dative-bonded molecule is thermally converted into a [4 + 2]-like cycloadduct. The reaction channels of the three five-membered aromatic molecules containing two different heteroatoms (isoxazole, oxazole, and thiazole) and of the aromatic molecules containing only one heteroatom (pyridine, pyrrole, furan, and thiophene) are compared and analyzed for a thorough understanding of the reaction mechanisms of various heterocyclic aromatic molecules on this surface. The intrinsic connection between surface reaction mechanism and molecular electronic structure is demonstrated. This includes the distribution of electron density on the molecular ring determined by the geometric arrangement of the heteroatoms, the electronegativity of the heteroatoms, and the electronic contribution of the heteroatoms to formation of aromatic pi conjugation, as well as the molecular polarity.  相似文献   

9.
The surface reaction pathways of isoxazole and oxazole on Si(100)-2 × 1 surface were theoretically investigated. They both form a weakly bound Si-N dative bond adduct on Si(100)-2 × 1 surface. In the case of isoxazole, the barrierlessly formed Si-N adduct is the most important surface product, that cannot be easily converted into other species. On the other hand, a facile concerted [4+2](CC) cycloaddition without involving the initial Si-N dative bond adduct was also found in the case of oxazole adsorption. The existence of Diels-Alder reactions is attributed to the particular arrangement of the two heteroatoms of oxazole in such a way that the two Si-C σ-bonds can be formed in a [4+2] fashion. In short, the unique geometric arrangements and electronegativity of these similar heteroatomic molecules yielded distinctively different surface reaction characteristics.  相似文献   

10.
The cycloaddition chemistry of several representative unsaturated hydrocarbons (1,3-butadiene, benzene, ethylene, and acetylene) and a heterocyclic aromatic (thiophene) on a Si(111)-7x7 surface has been explored by means of density functional cluster model calculations. It is shown that (i) 1,3-butadiene, benzene, and thiophene can undergo both [4+2]-like and [2+2]-like cycloadditions onto a rest atom-adatom pair, with the former process being favored over the latter both thermodynamically and kinetically; (ii) ethylene and acetylene undergo [2+2] cycloaddition-like chemisorptions onto a rest atom-adatom pair; and (iii) all of these reactions adopt diradical mechanisms. This is in contrast to the [4+2] cycloaddition-like chemisorptions of conjugated dienes on a Si(100) surface and to the prototype [4+2] cycloadditions in organic chemistry, which were believed to adopt concerted reaction pathways. Of particular interest is the [4+2]-like cycloaddition of s-trans-1,3-butadiene, whose stereochemistry is retained during its chemisorption on the Si(111) surface.  相似文献   

11.
We investigate the on‐surface [2+2] cycloaddition reaction of 2,3,6,7,10,11‐hexabromotriphenylene (HBTP) on Ag(111), Cu(111), Au(111), and Cu‐dosed Au(111) surfaces using STM and DFT simulation focusing on the organometallic intermediates. The fully debrominated HBTP molecules form an organo‐silver framework on Ag(111) and an organo‐copper framework on Cu(111), both incorporating multinuclear metal adatom clusters. The organo‐silver framework is converted into porous covalent networks via [2+2] cycloaddition above 240 °C. In contrast, the organo‐copper framework is very stable and does not undergo [2+2] cycloaddition even at 300 °C. On Au(111), no organo‐gold intermediate of [2+2] cycloaddition is observed. After loading Cu onto Au(111), the partially debrominated HBTP molecules bind to Cu adatom dimers to form multinuclear organo‐copper complexes at 100 °C which undergo [2+2] cycloaddition at 140 °C. This study shows that the choice of surface can direct the reaction pathway.  相似文献   

12.
A comprehensive ab initio study of the adsorption of benzene on the silicon(100) surface is presented. Five potential candidates ([2+2] adduct, [4+2] adduct, two tetra-sigma-bonded structures, and one radical-like structure) for the reaction product are examined to determine the lowest energy adsorption configuration. A [4+2] butterfly structure is determined to be the global minimum (-29.0 kcal/mol), although one of the two tetra-sigma-bonded structures (-26.7 kcal/mol) is similar in energy to it. Multireference perturbation theory suggests that the [4+2] addition mechanism of benzene on Si(100) is very similar to the usual Diels-Alder reaction (i.e., small or zero activation barrier), even though benzene adsorption entails the loss of benzene aromaticity during the reaction. On the other hand, the [2+2] cycloaddition mechanism is shown to require a relatively high activation barrier (17.8 kcal/mol), in which the initial step is to form a (relatively strongly bound) van der Waals complex (-8.9 kcal/mol). However, the net activation barrier relative to reactants is only 8.9 kcal/mol. Careful examination of the interconversion reactions among the reaction products indicates that the two tetra-sigma-bonded structures (that are energetically comparable to the [4+2] product) can be derived from the [2+2] adduct with activation barriers of 15.5 and 21.4 kcal/mol. However, unlike the previous theoretical predictions, it is found that the conversion of the [4+2] product to the tetra-sigma-bonded structures entails huge barriers (>37.0 kcal/mol) and is unlikely to occur. This suggests that the [4+2] product is not only thermodynamically the most stable configuration (lowest energy product) but also kinetically very stable (large barriers with respect to the isomerization to other products).  相似文献   

13.
The adsorption structures of pyrrole (C(4)H(5)N) on a Ge(100) surface at various coverages have been investigated with both scanning tunneling microscopy (STM) and ab initio density-functional theory (DFT) calculations. Three distinct features are observed in the STM images at low coverages. The comparison of the STM images with the simulation reveals that the most dominant flowerlike feature with a dark side is that the adsorbed pyrrole molecules with H dissociated form bridges between two down Ge atoms of neighboring Ge dimer rows through N-Ge bonding and beta-carbon-Ge interaction. The flowerlike feature without a dark side is also observed as a minority, which is identified as nearly the same structure as the most dominant one where a dissociated H is out of the feature. The third feature showing bright protrusions may be due to a C- and N-end-on (CN) configuration, where the pyrrole molecule is located on one dimer row. At higher coverages, the number of localized configurations increases.  相似文献   

14.
The surface reaction pathways of isothiazole and thiazole on Si(100)?2?×?1 surface were theoretically investigated using multireference wavefunctions. In the case of isothiazole, the Si?CN dative adduct turned out to be the major surface product. In contrast, a direct reaction competition between a concerted [4?+?2]CC cycloaddition and Si?CN dative adduct was found in the adsorption of thiazole. Therefore, it is concluded that the particular geometric arrangements of heteroatoms exhibit distinctly different initial surface reaction mechanisms.  相似文献   

15.
Dative bonding of nitrogen-containing heterocycles offers a strategy for the controlled attachment of aromatic molecules to silicon surfaces. However, while scanning tunneling microscopy shows that pyridine on clean Si(100) initially binds via a dative bonding configuration, slow conversion to a more stable bridging state, destroying the aromaticity, is observed. To restrict adsorption to the dative bonded form, we investigated the interaction of pyridine with isolated reactive sites on partially H-terminated Si(100). While dative bonding on isolated clean dimers is observed, single dangling bonds remain unreacted. This selectivity can be accounted for by the ability of the Si-Si dimers to act as electron acceptors that stabilize the dative bonded species. This observation has important implications for the controlled positioning of single molecules on silicon via dative bonding.  相似文献   

16.
Wang XN  Shen LT  Ye S 《Organic letters》2011,13(24):6382-6385
The enantioselective N-heterocyclic carbene-catalyzed formal [2 + 2] and [2 + 2 + 2] cycloaddition of ketenes and isothiocyanates were developed. Reaction with N-aryl isothiocyanates at room temperature favors the [2 + 2] cycloaddition, while reaction with N-benzoyl isothiocyanates at -40 °C favors the [2 + 2 + 2] cycloaddition.  相似文献   

17.
We have determined that a cationic rhodium(I)/Segphos complex catalyzes an enantio- and diastereoselective intermolecular [2+2+2] cycloaddition of 1,2-bis(arylpropiolyl)benzenes with various monoalkynes at room temperature to give axially chiral 1,4-teraryls possessing an anthraquinone structure in good yields with good enantio- and diastereoselectivities. We have also determined that a thermal intramolecular [4+2] cycloaddition of 1,2-bis(arylpropiolyl)benzenes proceeds at 60 degrees C to give aryl-substituted naphthacenediones in moderate to good yields.  相似文献   

18.
Ultraviolet photoelectron spectroscopy (UPS), work function measurements, low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) have been used to study the adsorption and desorption of 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C(2)C(1)Im][Tf(2)N], on the (1×2) clean surface reconstruction of Au(110) in the temperature range 100-674 K. The ionic liquid adsorbed without decomposition, and desorbed without leaving any residue on the surface. For adsorption at room temperature a monolayer of strongly bound ionic liquid was formed with four interface states visible in UP spectra. STM at 100 K showed that the monolayer consisted of well-ordered rows of adsorbed ionic liquid aligned parallel to the close packed rows of surface gold atoms (the [110] direction) with a separation of ×2 (the same as the clean surface reconstruction) between the rows in the orthogonal [001] direction. Multilayer adsorption at room temperature occurred by droplet formation followed by smoothing of the droplets to a layered morphology with time. Heating caused multilayer desorption at temperatures in the 363-383 K range, followed by partial monolayer desorption at 548 K to produce a Au(110)-(1×3) reconstructed surface with sub-monolayer domains of ionic liquid. Desorption of the remaining ionic liquid at 600 K caused the gold surface to reconstruct back to the clean (1×2) reconstruction.  相似文献   

19.
Using scanning tunneling microscopy (STM) together with density functional theory (DFT) the growth behavior of perylene on the Cu(100) substrate has been investigated. As revealed by STM images, perylene molecules prefer to adopt lying configuration with their molecular plane parallel to the substrate, and two symmetrically equivalent ordered domains were observed. DFT calculations show that perylene molecule prefers to adsorb on the top site of substrate Cu atoms with its long molecular axis aligning along the [011] or [01-1] azimuth of the substrate which is the most stable adsorption geometry according to its highest binding energy. Consequently, two adsorption structures of c(8×4) and c(8×6), each containing two perylene molecules per unit cell, are proposed based on our STM images. The growth mechanism for ordered perylene domains on Cu(100) can be attributed to the balance between weak adsorbate-adsorbate interaction and comparable adsorbate-substrate interaction.  相似文献   

20.
The reaction of the methimazolyl (mt, i.e., 2-mercapto-1-methylimidazolide) substituted silane Si(mt)(4) with SnCl(2) and GeCl(2) in dioxane affords the paddlewheel-shaped complexes [ClSi(μ-mt)(4)MCl] (M=Sn (1) and Ge (2), respectively). These compounds represent the first crystallographically characterized hexacoordinate silicon complexes comprising a Sn or Ge atom in the Si coordination sphere. An attempt to synthesize the related silicon compound 3 [ClSi(μ-mt)(4)SiCl] instead afforded the trisilane [ClSi(μ-mt)(4)Si-SiCl(3)] (3a), which provides the first crystallographic evidence for the feasibility of oligosilanes with adjacent hexacoordinate Si atoms. One of the hexacoordinate Si atoms of 3a features the unprecedented (Si(2)S(4))Si skeleton. Natural bonding orbital (NBO) analyses of compounds 1, 2, 3a (and the target compound 3) revealed characteristics of M(II)→Si(IV) (for 2 and 3) or M(I)→Si(IV) (for 3a) dative bonding in the systems with M=Si and Ge, whereas compound 1 exhibits a covalent Sn(III)-Si(III) bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号