首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
A combination of PFG-NMR imaging and velocity encoding methods was applied to investigate the dynamic behavior of a bed of poppy seeds subjected to air flow, representing a model setup for fluidized bed reactors. The particle motion is described both from a statistical point of view, by determining propagators and dispersion coefficients representing an average over the whole bed volume, as well as combined with spatial resolution by generating velocity maps. Velocity images of different horizontal slices in the bed confirm the notion of a toroidal particle flow pattern inside the shallow granular bed. Despite the need of considerable averaging due to the random motion of the relatively few particles in the bed, quantitative velocity images and statistical information about the random particle motion can be obtained from monitoring the fluid component in the seeds by conventional spin-echo techniques.  相似文献   

2.
We investigate the formation and dynamics of sand ripples under a turbulent water flow. Our experiments were conducted in an open flume with spherical glass beads between 100 and 500μm in diameter. The flow Reynolds number is of the order of 10 000 and the particle Reynolds number of the order of 1 to 10. We study the development of ripples by measuring their wavelength and amplitude in course of time and investigate the influence of the grain size and the flow properties. In particular, we demonstrate two different regimes according to the grain size. For fine grains, a slow coarsening process (i.e., a logarithmic increase of the wavelength and amplitude) takes place, while for coarser grains, this process occurs at a much faster rate (i.e., with a linear growth) and stops after a finite time. In the later case, a stable pattern is eventually observed. Besides, we carefully analyze the wavelength of ripples in the first stages of the instability as a function of the grain size and the shear velocity of the flow, and compare our results with other available experimental data and with theoretical predictions based on linear stability analyses.  相似文献   

3.
We investigate the process of ripple formation when a sand bed is submitted to a steady and turbulent liquid flow. The sand transport dynamics is described in terms of a simple relaxation law which accounts for the fact that the transport rate does not adapt instantaneously to its equilibrium value. The equilibrium sand flux is evaluated using a standard law based on the estimation of the flow shear stress calculated at the sand bed surface. The latter is estimated from an analytical resolution of the flow over a deformed sand bed which is based on the Jackson and Hunt calculation [J.C.R. Hunt, Quart. J. R. Met. Soc. 101, 929 (1975)]. Within this model, we investigate the stability of the sand bed and are able to derive analytical scaling laws for the wavelength and phase velocity of the most dangerous mode. In the deep flow limit, the model predicts the occurrence of a single mode of instability corresponding to the formation of ripples. Predictions of our model are compared with previous models and available experimental data.  相似文献   

4.
We demonstrate that a fluidized bed of hard spheres during defluidization displays properties associated with formation of a glass. The final state is rate dependent, and as this state is approached, the bed exhibits heterogeneity with increasing time and length scales. The formation of a glass results in the arrest of macroscopic particle motion and thus the loss of fluidization. Microscopic motion persists in this state, but the bed can be jammed by application of a small increase in flow rate. Thus a fluidized bed can serve as a test system for studies of glass formation and jamming.  相似文献   

5.
The formation of vortices at a moving front of lightweight granular particles is investigated experimentally. The particles used in this study are made of polystyrene foam with three different diameters of nearly uniform size. Pairs of vortices are found to emerge at the moving front at regular intervals, thereby forming a wavy pattern. Once the vortices are produced, the flow velocity tends to increase. A simple analysis suggests the existence of a velocity boundary layer at the moving front, whose thickness increases with increasing particle diameter. The frontal radius of each vortex pair is about the size of this boundary layer; when the radius exceeds this size, the front tends to bifurcate into a train of vortices with the size of the boundary layer. The formation of twin vortices leads to a reduction in the air drag force exerted on the system, and thereby the system attains a higher flow velocity, i.e., a higher conversion rate of gravitational potential energy to the kinetic energy of the particle motion. The higher conversion rate of potential energy thus feeds back to the development of the vortex motion, resulting in the twin vortex formation.  相似文献   

6.
We report an experimental study of a binary sand bed under an oscillating water flow. The formation and evolution of ripples is observed. The appearance of a granular segregation is shown to strongly depend on the sand bed preparation. The initial wavelength of the mixture is measured. In the final steady state, a segregation in volume is observed instead of a segregation at the surface as reported before. The correlation between this phenomenon and the fluid flow is emphasised. Finally, different exotic patterns and their geophysical implications are presented.Received: 25 July 2003, Published online: 25 March 2004PACS: 45.70.Qj Pattern formation - 45.70.Mg Granular flow: mixing, segregation and stratification - 47.20.Ma Interfacial instability  相似文献   

7.
We introduce a non-uniform gravity-like force field to control the granular flow state in a quasi-one-dimensional system, and study the system by the molecular dynamics simulation. We find that the granular flow under non-uniform force field can be well described by a density wave with fixed time period if a fixed particle number condition is used. The base frequency of the density wave does not depend on the position of the flow, while both the average density and oscillation amplitude of the flow vary continuously with the position. The formation of the density wave results from the aggregation of the granules in the decelerated region and the feed-back mechanism in the fixed particle number condition.  相似文献   

8.
We introduce a non-uniform gravity-like force field to control the granular flow state in a quasi-onedimensional system, and study the system by the molecular dynamics simulation. We find that the granular flow under non-uniform force field can be well described by a density wave with fixed time period if a fixed particle number condition is used. The base frequency of the density wave does not depend on the position of the flow, while both the average density and oscillation amplitude of the flow vary continuously with the position. The formation of the density wave results from the aggregation of the granules in the decelerated region and the feed-back mechanism in the fixed particle number condition.  相似文献   

9.
流化床内颗粒自旋转将影响颗粒相的流动特性.本文运用基于颗粒动理学理论的欧拉-欧拉气固多相流模型,考虑颗粒自旋转流动对颗粒碰撞能量交换和耗散的影响,数值模拟流化床内气体颗粒两相流动特性.计算结果表明颗粒的自旋转使得床内更容易形成气泡,颗粒浓度分布变化增大.颗粒自旋转运动将导致床内非均匀结构更明显.  相似文献   

10.
The formation of sand ripples under water shear flow in a narrow annular channel and the approach of the ripple pattern towards a steady state were studied experimentally. Four results are obtained: i) The mean amplitude, the average drift velocity and the mean sediment transport rate of the evolving bed shape are strongly related. A quantitative characterization of this relation is given. ii) The ripple pattern reaches a stationary state with a finite ripple amplitude and wavelength. The time needed to reach the state depends on the shear stress and may be several days. iii) The onset of ripple formation is determined by the bed shear stress, but it seems neither to depend on the grain diameter nor on the depth of the water layer. iv) The ripple amplitude, drift velocity and sediment transport in this stationary state depend on the grain size. This dependency is neither captured by the particle Reynolds number nor by the Shields parameter: an empirical scaling law is presented instead.  相似文献   

11.
With the method of large-eddy simulation, the equation of spherule motion and the method of immersed boundary condition, numerical simulations of three-dimensional turbulent aeolian motion and the formation of sand ripples under three-dimensional turbulent wind and the mutual actions of saltation and creeping motion were carried out. The resulting sand ripples have the form that is flat on the upwind side and steep on the leeward, which is identical to the sand ripples in nature. We also realized the self-restoration process of three-dimensional sand ripples, which shows the correctness of the method of numerical simulation and the models of saltation and creeping. Finally, We analyzed the influence of sand ripples on the three-dimensional turbulent wind field, and found that due to the appearance and development of sand ripples, in the normal direction of ground there exists stronger energy exchange, and moreover, there is close correspondence between the forms of sand ripples and the vorticity close to the ground surface. Supported by the Key Project of National Natural Science Foundation of China (Grant No. 10532040)  相似文献   

12.
Ran Li 《中国物理 B》2022,31(11):114501-114501
The velocity of a particle detector in granular flow can be regarded as the combination of rolling and sliding velocities. The study of the contribution of rolling velocity and sliding velocity provides a new explanation to the relative motion between the detector and the local granular flow. In this study, a spherical detector using embedded inertial navigation technology is placed in the chute granular flow to study the movement of the detector relative to the granular flow. It is shown by particle image velocimetry (PIV) that the velocity of chute granular flow conforms to Silbert's formula. And the velocity of the detector is greater than that of the granular flow around it. By decomposing the velocity into sliding and rolling velocity, it is indicated that the movement of the detector relative to the granular flow is mainly caused by rolling. The rolling detail shown by DEM simulation leads to two potential mechanisms based on the position and drive of the detector.  相似文献   

13.
The response of a granular material during a stop-and-go shear experiment is investigated using an annular shear cell and silicagel powders of different particle sizes. The experimental results are examined on the basis of the Dieterich-Rice-Ruina model for solid friction. In addition to making this analogy with solid friction, we describe a new instability that is observed when restarting shear, where the powder bed is found to slip and compact for short hold times but only dilates for long hold times. The minimum hold time to restore a non-slip behaviour has been investigated for different size particles and normal loadings. The observed dependencies show analogies between this behaviour and the sliding rearrangements seen above the stick-slip threshold.  相似文献   

14.
Particles can adsorb strongly at liquid interfaces due to capillary forces, which in practice can confine the particles to the interface. Here we investigate the electrohydrodynamic flow driven packing and deformation of colloidal particle layers confined at the surface of liquid drops. The electrohydrodynamic flow has a stagnation point at the drop equator, leading to assembly of particles in a ribbon shaped film. The flow is entirely controlled by the electric field, and we demonstrate that AC fields can be used to induce hydrodynamic “shaking” of the colloidal particle film. We find that the mechanical properties of the film is highly dependent on the particles: monodisperse polystyrene beads form packed granular monolayers which “liquefies” upon shaking, whereas clay mineral particles form cohesive films that fracture upon shaking. The results are expected to be relevant for understanding the mechanics and rheology of particle stabilized emulsions.  相似文献   

15.
Starting from the phenomenological model for sand ripple formation developed in [#!Bouchaud98!#], we proposed a new interpretation in the light of recent experiments. Furthermore, we derive, close to the threshold of ripple instability, a nonlinear equation for the spatio-temporal evolution of the sand bed profile, which to leading order has a quadratic nonlinearity. This equation is identical to that derived recently on the basis of geometry and conservation law [#!Csahok98!#]. Our derivation connects the coefficients of the nonlinear equation to the underlying physical mechanisms (reptation length...). This equation reveals ripple structures which then undergo a coarsening process, as observed in wind tunnel experiment. Small, fast moving ripples are absorbed by larger, slower forms resulting in a growth of the mean wavelength. Received 5 January 1999  相似文献   

16.
Dispersive flow of disks through a two-dimensional Galton board   总被引:1,自引:0,他引:1  
We report here an experimental and numerical study of the flow properties of disks driven by gravity through a hexagonal lattice of obstacles, i.e. a Galton board. During the fall, particles experience dissipative collisions that scatter them in random directions. A driven-diffusion regime can be achieved under certain conditions. A characteristic length of the motion and its dependence on geometrical parameters of the system is analyzed in the steady regime. The influence of collective effects on the dispersion process is investigated by comparison between single- and many-particle flows. The characterization of the dynamics and the diffusive properties of the flow in a system like a Galton board can be expanded to other granular systems, particularly static solid particle mixers and will give some insight in understanding granular mixing.  相似文献   

17.
贾宇鹏  王景甫  郑坤灿  张兵  潘刚  龚志军  武文斐 《物理学报》2016,65(10):106701-106701
多孔介质在生产生活以及科技发展中的应用十分广泛, 随着能源、化工、冶金和原子能等领域技术的发展, 以及近代工农业生产技术的进步, 大量多孔介质的传热传质问题逐渐出现, 进一步促进了多孔介质学科的形成和发展, 使其成为当今科学技术中令人瞩目的研究热点之一. 通过实验获得准确的实验图像和数据, 并使用相应软件对实验所得数据和流体流动图像进行深度分析, 这样既有真实可靠的实际数据, 又有直观的理论的支持, 使对多孔介质的研究更为完善. 实验结合粒子图像测试技术和折射率匹配技术对叉排排列玻璃球多孔介质填充床内的流体流动转变过程进行流场测试, 并提取数据, 采用Tecplot软件对提取数据进行处理, 得出流体流动机理的转变过程. 实验固相为由直径25 mm水晶玻璃球叉排堆积而成的填充床, 液相为65%苯甲醇和35% 无水乙醇配制的匹配液. 液相与固相的折射率都为1.477, 成功消除由于折射率不匹配引起的激光光线偏折. 实验得到雷诺数为 4.7 ≤ Re ≤ 1000时球床内流场图, 对比不同雷诺数时流场和流线变化得出: 随着雷诺数的增加, 流线变得越来越紊乱; 当雷诺数在220以上时, 球床内漩涡在尺寸变化上出现突跃, 在位置和形态变化表现出随机特征, 预示进入了稳定的湍流.  相似文献   

18.
Using MRI and high-speed video we investigate the motion of a large intruder particle inside a vertically shaken bed of smaller particles. We find a pronounced, nonmonotonic density dependence, with both light and heavy intruders moving faster than those whose density is approximately that of the granular bed. For light intruders, we furthermore observe either rising or sinking behavior, depending on intruder starting height, boundary condition, and interstitial gas pressure. We map out the phase boundary delineating the rising and sinking regimes. A simple model can account for much of the observed behavior and shows how the two regimes are connected by considering pressure gradients across the granular bed during a shaking cycle.  相似文献   

19.
Sandy bed cannot keep its original smoothness as the flows pass. With the increase of the flow intensity, the bed forms will appear as sand ripples and dune in turn. Among these morphologies, the sand ripple scale is the smallest, which is generally symmetrical when it just appears, but as time goes on, the asymmetrical form gradually develops. Just because of this sand ripples asymmetry, it manifests the influence of the flow on the bed morphology and also the impact on the laminar flow dynamical process, especially the stability characteristics. The stability features of laminar flow on open channels with the asymmetrical sand ripples are discussed, and also the results on the symmetrical sand ripples are compared in detail.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号