首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The elastic properties and Debye temperatures of xB2O3–70TeO2–(30–x)WO3, (0 ≤ x ≤ 30 mol%) glasses have been investigated using sound velocity measurements at 4 MHz. Ultrasonic and thermal parameters, combined with the results of IR spectroscopic analyses, were employed to explore the effect of B2O3 on the structure of tungsten–tellurite glasses. According to IR analysis, there is competition between WO6 and TeO4 units to form BO4 units, and the vibrations of the tellurite structural units are shifted towards lower wavenumbers on the formation of non-bridging oxygens. It is assumed that B2O3 acts as a modifier by decreasing the glass-transition temperature T g and increasing both the thermal stability and glass formation range of the tellurite glasses. The change in density and molar volume with B2O3 content reveals that the borate units are less dense than the tellurite structural units. The observed compositional dependence of elastic moduli is interpreted in terms of the effect of B2O3 on the coordination number of the tellurite units. A good correlation was observed between experimentally determined elastic moduli and those computed with the Makishima–Mackenzie model.  相似文献   

2.
Tellurite glasses of the xNb2O5–(100–x) TeO2, (3 ≤ x ≤ 20 mol%) system have been prepared and studied by IR spectroscopy and differential thermal analysis to explore the role of Nb2O5 on their structure. IR analysis indicates that NbO6 transforms TeO4 units into tellurite structural TeO3 units, with a shift of lattice vibrations towards higher wavenumbers. The stretching force constant of the tellurite structural units increases with Nb2O5 content, a feature that is attributed to the higher bond strength and higher coordination number of Nb2O5 relative to TeO2. The crystallization kinetics has been studied under non-isothermal conditions using the formal theory of transformations for heterogeneous nucleation. The crystallization results are analyzed, and both the activation energy of the crystallization process and the crystallization mechanism are characterized. The thermal stability of these glasses are characterized in terms of characteristic temperatures, such as the glass-transition temperature, T g, the temperature of onset of crystallization, T in, the temperature corresponding to the maximum crystallization rate, T p, and two kinetic parameters, K(T g) and K(T p). The results reveal that thermal stability increases with increasing Nb2O5 content. XRD diffraction of the studied glasses indicates the presence of microcrystallites of α-tellurite, γ-telluride, Nb2Te4O13 and an amorphous matrix.  相似文献   

3.
H. Kumar  N. Chandel 《Phase Transitions》2016,89(11):1103-1118
In this communication, we report the results of calorimetric measurements on the samples of recently synthesized multi-component glassy alloys of Se78?xTe20Sn2Bix (0 ≤ x ≤ 6) system. For calorimetric study of glass transition kinetics, differential scanning calorimetry (DSC) technique has been used in non-isothermal mode. Peak glass transition temperature (Tg) is determined using the DSC scans. Kinetic parameters A and B of glass transition are determined using heating rate dependence of Tg. Activation energy of glass transition (Eg) has been calculated using Moynihan and Kissinger methods. Glass-forming ability and thermal stability are also determined using Hurby and Saad–Poulin relations, respectively.  相似文献   

4.
Yasser B. Saddeek 《哲学杂志》2013,93(26):2305-2320
Lead vanadate glasses of the system xMoO3–50V2O5–(50-x)PbO (0 ≤ x ≤ 25 mol. %) were synthesized and studied by FTIR and ultrasonic spectroscopy and differential scanning calorimetry to investigate the role of MoO3 content on their atomic structure. The elastic properties and Debye temperatures of the glasses were investigated using sound velocity measurements at 4 MHz. The activation energy for the glass transition was derived from the dependence of the glass-transition temperature (Tg ) on the heating rate. Similarly, the activation energy of the crystallization process was also determined. According to the IR analysis, the vibrations of the vanadate structural units are shifted towards higher wavenumbers on the formation of bridging oxygens. The change of density and molar volume with MoO3 content reveals that the molybdinate units are less dense than the lead oxide units. The observed compositional dependence of the elastic moduli is interpreted in terms of the effect of MoO3 on the coordination number of the vanadate units. A good correlation was observed between the experimentally determined elastic moduli and those computed according to the Makishima–Mackenzie model. It is assumed that MoO3 plays the role of a glass former by increasing the activation energy for the glass transition and the activation energy for crystallization and by increasing both the thermal stability and the glass formation range of the vanadate glasses.  相似文献   

5.
In this research work, we have described the model-fitted and model free approaches for the study of crystallization kinetics in Se85Te15-xBix chalcogenide glasses. Se85Te15-xBix bulk alloys were synthesized by melt quenching technique. High Resolution X- Ray diffraction (HRXRD) was used to confirm the amorphous nature of prepared alloys. Non-isothermal Differential Scanning Calorimetry (DSC) measurements were done at heating rates of 5, 10, 15, 20 and 25 K/min for crystallization kinetics studies in Se85Te15-xBix glasses. The various characteristic temperatures, such as glass transition (Tg), on-set crystallization (Tc) temperature, peak crystallization temperature (Tp) and melting temperatures (Tm) have been obtained from various DSC thermograms. The activation energies of glass transition (ΔEt) were calculated by using Kissinger and Moynihan approaches and found to be minimum for Se85Te12Bi3 chalcogenide glass which indicates that this alloy has maximum probability to jump into a less configurational energy state and has larger stability. The model-free approaches; Kissinger–Akahira–Sunose (KAS), Flynn-Wall-Ozawa (FWO), Tang and Straink (TS) reveal that the activation energy of crystallization varies with crystallization degree and temperature both. This variation shows that amorphous to crystalline phase transformation in Se85Te15-xBix chalcogenide glasses is a complex process with various nucleation and growth mechanisms.  相似文献   

6.
X-ray diffraction was performed to construct the phase diagram for the ternary Li2B4O7–Pb3O4–CuO glass system. Three principal regions were identified: (1) a glass-forming region observed at the composition (75 < Li2B4O7 < 100) mol%, (0 < CuO < 35) mol% and (0 < Pb3O4 < 70) mol% in the ternary system, and (100 ? x) mol% Li2B4O7x mol% Pb3O4 where x = 0 up to 70, (100 ? y) mol% Li2B4O7y mol% CuO where y = 0 up to 25 in the binary system;. (2) a crystalline region: all compositions prepared from the binary system Pb3O4–CuO and the ternary system containing Li2B4O7 up to 60 mol%; (3) a partially crystalline region formed between the glass and crystalline regions.  相似文献   

7.
This article describes the preparation of multi-walled carbon nanotube (MWCNT) chalcogenide glass composite by the melt-quenching technique. MWCNT composite (Se80Te20)100?xAgx (0 ≤ x ≤ 4) bulk samples are characterized by the XRD, SEM and EDX. The electrical measurements were carried out in the temperature range of the 308-388 K. Cole–Cole plot has been used to determine the electrical conductivity at room temperature. It has been observed that MWCNT chalcogenide composite have higher value of electrical conductivity than pure glass. The results have been discussed on the basis of increased ionic conductivity (Ag+ ions) in MWCNT doped (Se80Te20)100?xAgx (0 ≤ x ≤ 4) bulk samples.  相似文献   

8.
Polyvinyl alcohol (PVA) doped (Se80Te20)100–xAgx (0 ≤ x ≤ 4) thin films were prepared by the spin-coating technique on a quartz substrate. The optical parameters of PVA-doped (Se80Te20)100–xAgx (0 ≤ x ≤ 4) composites at the same chalcogen concentration (S0 = 0.1 mg ml?1) and PVA/(Se80Te20)96Ag4 composites at three different chalcogen concentrations viz. S1 = 0.3 mg ml?1, S2 = 0.6 mg ml?1 and S3 = 1 mg ml?1 have been studied. The semi-crystalline nature of the as-deposited thin filmsisdetermined by X-ray diffraction. The transmission and reflection spectra of PVA-doped Se–Te–Ag thin films were obtained in a 350–650 nm spectral region. The optical-band gap has been calculated from the transmission and reflection data. The refractive index has been calculated by the measured reflection data. It has been found that the optical-band gap increases, but the refractive index, extinction coefficient, and the real and imaginary parts of the dielectric constant decrease, with increase in Agcontent in PVA-doped (Se80Te20)100–xAgx (0 ≤ x ≤ 4) thin films. Such type of behavior is explained on the basis of decrease in density of the defect states. However, the optical-band gap has been found to be decreased and all other optical parameters show increase in their values with increase in concentration of (Se80Te20)96Ag4 glass in PVA-doped composites. The results have been explained on the basis of cluster-size formation at the time of dissolution. This study shows that the optical properties of new composites are affected by the change in silver and chalcogen concentration.  相似文献   

9.
Various glass samples were prepared by melt quench technique in the glass system [(Ba1? x Sr x ) TiO3]–[2SiO2–B2O3]–[K2O] doped with 1?mole% of La2O3. Infrared spectra show the number of absorption peaks with different spliting in the wave number range from 450 to 4000?cm?1. Absorption peaks occurs due to asymetric vibrational streching of borate by relaxation of the bond B–O of trigonal BO3. Raman spectra show the Raman bands due to ring-type metaborate anions, symmetric breathing vibrations BO3 triangles replaced by BO4 tetrahedra, and symmetric breathing vibrations of six-member rings. The differential thermal analysis of a glass sample corresponding to composition x?=?0.0 shows crystallization temperature at 847°C and glass transition temperature at 688°C. X-ray diffraction (XRD) pattern of glass ceramic samples shows the major crystalline phase of BaTiO3 whereas pyrochlore phases of barium titanium silicate. Scanning electron micrographs confirm the results of XRD as barium titanate is major crystalline phase along with pyrochlore phase of barium titanium silicate.  相似文献   

10.
Crystallization kinetics of Bi1.7V0.3Sr2Ca2Cu3Ox glass-ceramic was investigated using the differential scanning calorimetry (DSC) technique. Three characteristic phenomena were observed in the studied temperature range. The activation energies for glass transition temperature and crystallization phenomena were determined by different theoretical models. Applying the modified Johnson–Mehl–Avrami (JMA) equation reasonably suggests that crystallization process of the Bi1.7V0.3Sr2Ca2Cu3Ox glass-ceramic is carried out by a bulk growth in three dimensions.  相似文献   

11.
The optical absorption spectra of the glasses with composition xBi2O3·(30???x)R2O·70B2O3 (R?Li, Na, K) and xBi2O3·(70???x)B2O3·30Li2O (0?≤?x?≤?20) have been recorded in the wavelength range 350–650?nm. The glass samples were prepared by the normal melt–quench technique. The fundamental absorption edge for all the series of glasses is analyzed using the theory of Davis and Mott. The position of absorption edges and the values of optical band gap are dependent on the mol% of Bi2O3. The absorption in these glasses is associated with indirect transitions. The values of Urbach's energy and band tailing parameters are reported. The two photon absorption coefficient, β, in these glasses has also been estimated from the optical band gap and its value ranges from 1.3 to 11.6?cm/GW. The relationship between β and glass composition has also been discussed in terms of the electronic structure of the glass system.  相似文献   

12.
Experiments on Ge15Te85? x Si x glasses (2 ≤ x ≤ 12) using alternating differential scanning calorimetry (ADSC) indicate that these glasses exhibit one glass transition and two crystallization reactions upon heating. The glass transition temperature has been found to increase almost linearly with silicon content, in the entire composition tie-line. The first crystallization temperature (T c1) exhibits an increase with silicon content for x < 5; T c1 remains almost a constant in the composition range 5 < x ≤ 10 and it increases comparatively more sharply with silicon content thereafter. The specific heat change (ΔC p) is found to decrease with an increase in silicon content, exhibiting a minimum at x = 5 (average coordination number, ?r? = 2.4); a continuous increase is seen in ΔC p with silicon concentration above x = 5. The effects seen in the variation with composition of T c1 and ΔC p at x = 5, are the specific signatures of the mean-field stiffness threshold at ?r? = 2.4. Furthermore, a broad trough is seen in the enthalpy change (ΔH NR), which is indicative of a thermally reversing window in Ge15Te85? x Si x glasses in the composition range 2 ≤ x ≤ 6 (2.34 ≤ ?r? ≤ 2.42).  相似文献   

13.
ABSTRACT

Structure and physical properties of 25CaO–xPbO–(75–x)P2O5 (0≤x≤35) glasses are investigated in this paper. Substitution of PbO for P2O5 in the binary 25CaO–75P2O5 glass was found to increase the density and to decrease the molar volume. Fourier transform infrared (FTIR) and Raman spectroscopies show the evolution of the phosphate skeleton when the PbO content increases: Q3 to Q2 species (0<x≤25) and Q2 phosphate network (x = 25) to short phosphate groups (x > 25) such as (P4O136?) (x = 35). The glass transition temperature first decreases with x, then increases for x values larger than 10%. The evolution of the glass transition temperatures is interpreted from the structural data: the minimum point observed in Tg is attributed to the transition of the ultraphosphate network from the network containing the modifying cations at isolated sites to a network with modifier sub-structure sharing terminal oxygens. At higher PbO content, the large increase in Tg is due to the reticulation of the phosphate network by PbO4 groups.  相似文献   

14.
The Raman spectroscopy technique was used to characterize the microstructure and the crystallization properties of the as‐cast and heat‐treated binary TeO2 WO3, TeO2 CdF2 and ternary TeO2 CdF2 WO3 glasses and glass ceramics. The results were compared with those obtained by using the X‐ray diffraction technique. The effect of the WO3 and CdF2 contents on the TeO2 glass network and the intensity ratios of the deconvoluted Raman peaks were determined. The shifts in the Raman band wavenumbers and the intensity values for each band were investigated. The Raman results indicated that the glasses were mainly formed by the [TeO4] and [TeO3] units. The [TeO4] units convert to [TeO3] units with the addition of WO3 and CdF2 into tellurite glasses. All the crystalline phases such as α‐TeO2, δ‐TeO2 and γ‐TeO2 existing in the TeO2 WO3, TeO2 CdF2 and TeO2‐ WO3 CdF2 glasses were determined. The transformation of the metastable γ‐TeO2 phase into stable α‐TeO2 was observed for the (1 − x)TeO2xWO3 (where x = 0.15, 0.20, 0.25), 0.90Te2 0.10CdF2, the 0.85TeO2 0.10CdF2 0.05WO3 and 0.80TeO2 0.10CdF2 0.10WO3 glasses, and the transformation of the metastable δ‐TeO2 phase into the stable α‐TeO2 was also observed for the TeO2 CdF2 WO3 glass system. In addition, an unidentified phase formation, labeled ε, was determined. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Bulk amorphous samples of Sb-substituted Se78?xTe20Sn2Sbx (0 < x < 6) have been prepared using melt quench technique. The structure of Se78?xTe20Sn2Sbx (x = 0, 2, 4, 6) glassy alloys has been investigated using X-ray diffraction technique. Calorimetric studies of the prepared samples have been performed under non-isothermal conditions using differential scanning calorimetry (DSC) and glass transition temperature as well as crystallization temperature has been evaluated using DSC scans. The activation energy of crystallization kinetics (Ec) has been determined using model-free approaches such as Kissinger, Ozawa, Tang and Starink methods. The Avrami index (n) and frequency factor (Ko) have been calculated by Matusita and Augis–Benett method.  相似文献   

16.
The crystallization process of Se77.5Te15Sb7.5 glass is studied by differential scanning calorimetry (DSC) technique under non-isothermal conditions at various heating rates. The crystallization parameters are deduced using different models. The validity of the Johnson–Mehl–Avrami (JMA) model to describe the crystallization process for the studied composition is investigated. Comparing experimental and calculated DSC curves indicate that the crystallization process of Se77.5Te15Sb7.5 glass cannot satisfactorily be described by the JMA model. In general, simulation results indicate that the Sestak–Berggren model is more suitable to describe the crystallization kinetics. The crystalline phases are identified using the X-ray diffraction technique and scanning electron microscopy.  相似文献   

17.
Results of differential scanning calorimetry of high purity GexAs40−xSe40Te20 (x=0-40) chalcogenide glasses are reported. The glass transition temperatures and crystallization behavior were studied under non-isothermal conditions at different heating rates (2.5-35 K/min). The glass transition temperature changes from 140 °C up to 320 °C with increasing the Ge content in GexAs40−xSe40Te20 glass. The studied glasses with x≤35 have no exothermal peaks of crystallization, indicating their high glass-forming ability. The glass of Ge40Se40Te20 composition has one-stage glass transition and double-stage crystallization process during phase change. The activation energy of the glass transition (Eg), the activation energy of crystallization (Ec), the Avrami exponent (n), the frequency factor (K0) and the crystallization criteria of Ge40Se40Te20 glass were determined.  相似文献   

18.
Glass samples of composition xAl2O3-20PbO-(80−x)B2O3 and xWO3-xAl2O3-20PbO-(80−2x)B2O3 with x varying from 0% to 10% mole fraction are prepared by melt quench technique. The optical band gap decreases (from 3.21 to 2.37 eV) more for WO3-Al2O3-PbO-B2O3 glasses with an addition of WO3 content. The FTIR spectral studies have pointed out the conversion of structural units of BO3 to BO4 and WO4 to WO6 in these glasses. The increase in density from 4.51 to 5.80 g cm−3 for WO3-Al2O3-PbO-B2O3 glasses is observed with an increase in WO3 content. This is observed that the atomic structure changes more with the incorporation of WO3. This is due to the formation of WO6, WO4 and BO4 units.  相似文献   

19.
Crystallization processes of partially devitrifled glass obtained by rapid quenching of 0·175 MnO + 0·175. Fe2O3 + 0·65 B2O3 melt were studied by DTA and X-ray analyses and the temperature regions of nucleation, crystallization and decompozition of the spinel phase were established. The magnetization curves measured between 4·2 and 250 K in magnetic fields up to 42 kOe divided the samples into two groups: the original as cast glass and those annealed below the crystallization temperature, as well as above the decomposition temperature showed essentially paramagnetic behaviour, whereas those annealed closely above the crystallization temperature displayed a spontaneous magnetic moment. The former ones could not be classified as superparamagnetic but the temperature dependence of their susceptibility could be explained by interactions of the antiferromagnetic type. The comparison of lattice parameter and Curie temperature of the latter one with crystalline Mn x Fe3-x O4, system indicated pronounced iron enrichment of the spinel phase formed during heat treatment.Based on a paper presented at the Conference of Socialist Countries on Magnetic Oxides and Compounds; Reinhardsbrunn bei Friedrichroda, GDR, October 22nd–27th, 1972.The authors thank Mrs. A.Hadincová for the help with the evaluation of the results.  相似文献   

20.
刘军芳  苏良碧  徐军 《物理学报》2013,62(3):37804-037804
采用高温熔融法制备了xBi2O3-50B2O3-(50-x)BaO玻璃, 测定了样品玻璃的近红外光区的发射谱、荧光寿命以及Raman光谱. 在808 nm波长光的激发下, 50Bi2O3-50B2O3二元玻璃中未观察到近红外发光; 随体系中BaO的加入, 当x为40, 45以及49时, 玻璃样品中观察到了近红外宽带发光现象; BaO含量进一步增加, 当x=10–30时, 近红外发光现象消失; 而当玻璃中Bi浓度很低时, 在0.5Bi2O3-50B2O3-50BaO及1Bi2O3-50B2O3-50BaO玻璃中发现了近红外发光现象, 且存在多个发光峰. 对铋离子近红外发光机理进行了初步的探讨.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号