首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Atomic-scale computer simulation is used to study the interaction between a vacancy and a cluster of self-interstitial atoms in metals with hcp, fcc and bcc crystal structure: α-zirconium, copper and α-iron. Effects of cluster size, atomic structure, dislocation nature of the cluster side and temperature are investigated. A vacancy can recombine with any interstitial in small clusters and this does not affect cluster mobility. With increasing sizes clusters develop dislocation character and their interaction with vacancies depends on whether the cluster sides dissociate into partial dislocations. A vacancy recombines only on undissociated sides and corners created with undissociated segments. Vacancies inside the cluster perimeter do not recombine but restrict cluster mobility. Temperature enhances recombination by either increasing the number of recombination sites or assisting vacancy diffusion towards such sites. The results are discussed with relevance to differences in irradiation microstructure evolution of bcc, fcc and hcp metals and higher level theoretical modelling techniques.  相似文献   

2.
3.
Self-interstitial interactions causing volume expansion in bcc Fe are studied through an idealized microstructure evolution model in which only self-interstial atoms (SIAs) are inserted. Using a combination of non-equilibrium molecular dynamics simulations and a metadynamics algorithm, meta-stable SIA clusters are observed to nucleate and grow into dislocation loops or localized amorphous phases, both contributing to swelling behavior persisting well beyond the atomistic time scale. A non-monotonic local density variation with dose rate is found and attributed to competing evolutions of different defective structures.  相似文献   

4.
Shree Krishna  Amir Zamiri 《哲学杂志》2013,93(30):4013-4025
A rate-independent dislocation and defect density-based evolution model is presented that captures the pre- and post-yield material behavior of fcc metals subjected to different doses of neutron radiation. Unlike previously developed phenomenological models, this model is capable of capturing the salient features of irradiation-induced hardening, including increase in yield stress followed by yield drop and non-zero stress offset from the unirradiated stress–strain curve. The key contribution is a model for the critical resolved slip resistance that depends on both dislocation and defect densities, which are governed by evolution equations based on physical observations. The result is an orientation-dependent non-homogeneous deformation model, which accounts for defect annihilation on active slip planes. Results for both single and polycrystalline simulations of OFHC copper are presented and are observed to be in reasonably good agreement with experimental data. Extension of the model to other fcc metals is straightforward and is currently being developed for bcc metals.  相似文献   

5.
强流脉冲电子束辐照下单晶铝中的堆垛层错四面体   总被引:1,自引:0,他引:1       下载免费PDF全文
利用强流脉冲电子束技术对单晶铝进行了辐照,并利用透射电镜对强流脉冲电子束诱发的空位簇缺陷进行分析.实验结果表明,强流脉冲电子束能够诱发位错圈、孔洞甚至堆垛层错四面体这种通常在高层错能金属中不能形成的空位簇缺陷,并且三种不同类型的空位簇缺陷的形核过程并不同时发生,三种空位簇缺陷存在着密切的关系.根据实验结果提出了堆垛层错四面体形成与生长机理. 关键词: 强流脉冲电子束 堆垛层错四面体 单晶铝 空位簇缺陷  相似文献   

6.
The analytic embedded atom method (EAM) type many-body potentials of hcp rare earth metals (Dy, Er, Gd, Ho, Nd, Pr, and Tb) have been constructed. The hcp lattice is shown to be energetically most stable when compared with the fcc and bcc structure, and the hcp lattice with ideal c/a. The mechanical stability of the corresponding hcp lattice with respect to large change of density and c/a ratio is examined. The phonon spectra, stacking fault and surface energy are calculated. The activation energy for vacancy diffusion in these metals has been calculated and the most possible diffusion paths are predicted. Finally, the self-interstitial atom (SIA) formation energy and volume have been evaluated for eight possible sites. This calculation suggests that the crowdion and basal split are the most stable configurations. The SIA formation energy increases linearly with the increase of the melting temperature.Received: 26 March 2003, Published online: 9 September 2003PACS: 34.20.Cf Interatomic potentials and forces - 66.30.Fq Self-diffusion in metals, semimetals, and alloys - 61.72.Ji Point defects (vacancies, interstitials, color centers, etc.) and defect clusters - 61.72.Bb Theories and models of crystal defects  相似文献   

7.
利用强流脉冲电子束技术对单晶铝进行了辐照,并利用透射电镜对强流脉冲电子束诱发的空位簇缺陷进行分析.实验结果表明,强流脉冲电子束能够诱发位错圈、孔洞甚至堆垛层错四面体这种通常在高层错能金属中不能形成的空位簇缺陷,并且三种不同类型的空位簇缺陷的形核过程并不同时发生,三种空位簇缺陷存在着密切的关系.根据实验结果提出了堆垛层错四面体形成与生长机理.  相似文献   

8.
We construct a model for the formation of a dislocation cluster and its evolution after the detachment of the head dislocation. The results obtained with the help of this model are used for calculating the acoustic emission signal accompanying the stages of cluster formation and breakdown. The elastic stresses in the signal under investigation are estimated. The data on relaxation of elastic stresses in the sample containing the cluster are reported.  相似文献   

9.

Atomic-scale computer simulation has been used to study the thermally activated atomic transport of self-interstitial atoms (SIAs) in the form of planar clusters in pure Cu and f-Fe. There is strong evidence that such clusters are commonly formed in metals during irradiation with high-energy particles and play an important role in accumulation and spatial distribution of surviving defects. An extensive study of the mobility of SIA clusters containing two to 331 interstitials has been carried out using the molecular dynamics simulation technique for the temperature range from 180 to 1200 K. The results obtained show that clusters larger than three to four SIAs are one-dimensionally mobile in both Cu and Fe. Large clusters of more than 100 SIAs in Cu and 300 SIAs in Fe have significantly reduced mobility. The problem of describing one-dimensional (1D) motion in three-dimensional space is discussed. An attempt is made to describe the mobility of SIA clusters within the approximation of 1D diffusion. For clusters in both metals the effective migration energy of 1D diffusion as estimated via the jump frequency of the cluster centre of mass is found to be independent of the number of SIAs in the clusters, although the cluster jump frequency decreases with increasing cluster size. Mechanisms of 1D mobility of interstitial clusters are discussed.  相似文献   

10.
We report the first ab initio density-functional study of the strain field and Peierls stress of isolated <111> screw dislocations in bcc Mo and Ta. The local dislocation strain field is self-consistently coupled to the long-range elastic field using a flexible boundary condition method. This reduces the mesoscopic atomistic calculation to one involving only degrees of freedom near the dislocation core. The predicted equilibrium core for Mo is significantly different from previous atomistic results and the Peierls stress shows significant non-Schmid behavior as expected for the bcc metals.  相似文献   

11.
Most experiments on neutron or heavy-ion cascade-produced irradiation of pure metals and metallic alloys demonstrate unlimited void growth as well as development of the dislocation structure. In contrast, the theory of radiation damage predicts saturation of void size at sufficiently high irradiation doses and, accordingly, termination of accumulation of interstitial-type defects. It is shown in the present paper that, under conditions of steady production of one-dimensionally (1-D) mobile clusters of self-interstitial atoms (SIAs) in displacement cascades, any one of the following three conditions can result in indefinite damage accumulation. First, if the fraction of SIAs generated in the clustered form is smaller than some finite value of the order of the dislocation bias factor. Second, if solute, impurity or transmuted atoms form atmospheres around voids and repel the SIA clusters. Third, if spatial correlations between voids and other defects, such as second-phase precipitates or dislocations, exist that provide shadowing of voids from the SIA clusters. The driving force for the development of such correlations is the same as for void lattice formation and is argued to be always present under cascade-damage conditions. It is emphasised that the mean-free path of 1-D migrating SIA clusters is typically at least an order of magnitude longer than the average distance between microstructural defects; hence, spatial correlations on the same scale should be taken into consideration. A way of developing a predictive theory is discussed. An interpretation of the steady-state swelling rate of ~1%/displacement per atom (dpa) observed in austenitic steels is proposed.  相似文献   

12.
Copper-rich precipitates can nucleate and grow in ferritic steels containing small amounts of copper in solution and this affects mechanical properties. Growth kinetics, composition and structure of precipitates under irradiation are different from those under thermal ageing, and also vary with type of radiation. This implies that the interaction between radiation defects, i.e. vacancies, self-interstitial atoms (SIAs) and their clusters, and precipitates is influential. It is studied here by atomic-scale computer simulation. The results are compared with those of elasticity theory based on the size misfit of precipitates and defects, and the modulus difference between bcc iron and bcc copper. It is found that SIA defects are repelled by precipitates at large distance but, like vacancies, attracted at small distance. Copper precipitates in iron can, therefore, be sinks for both vacancy and interstitial defects and hence can act as recombination centres under irradiation conditions. A tentative explanation for the mixed Cu–Fe structure of precipitates observed in experiment and the absence of precipitate growth under neutron irradiation is given. More generally, agreement between the simulations and elasticity theory suggests that the results are not artefacts of the atomic model: both vacancy and interstitial defects in metals may bind to precipitates with weaker cohesion than the matrix.  相似文献   

13.
14.
Q. Z. Chen  B. J. Duggan 《哲学杂志》2013,93(23):3633-3646
The mechanisms of shear band formation in IF steel after cold rolling to ~50% reductions have been investigated using transmission electron microscopy. The observations revealed that shear bands were always parallel to a second set of microbands, where these exist, and contained within individual crystals, indicating that shear banding is controlled by orientation. Crystallographic analysis revealed that shear banding involves two mechanisms, dislocation glide and rigid-body rotation. In the first step, dislocation glide causes a rotation about the 〈211〉 axis to produce the so called ‘S’ band, which gives the shear band its crystallographic character. In the second step, when the most heavily stressed slip plane parallel to the shear band is of the form {110}〈111〉, rigid-body rotation continues about the 〈211〉 axis in the sheared zone and, then, a rotation about the transverse direction (TD) is promoted by the geometry of the sample. Using rigid-body matrix theory, the calculated orientations of shear bands are shown to be in agreement with experimental observations. The process outlined is capable of explaining how slip processes in grains that contain microbands, using either {110} or {112} slip planes, can produce crystallographic shear bands.  相似文献   

15.
The effect of dislocation stress fields on the sink efficiency thereof is studied for hydrogen interstitial atoms at temperatures of 293 and 600 K and at a dislocation density of 3 × 1014 m–2 in bcc iron crystal. Rectilinear full screw and edge dislocations in basic slip systems 〈111〉{110}, 〈111〉{112}, 〈100〉{100}, and 〈100〉{110} are considered. Diffusion of defects is simulated by means of the object kinetic Monte Carlo method. The energy of interaction between defects and dislocations is calculated using the anisotropic theory of elasticity. The elastic fields of dislocations result in a less than 25% change of the sink efficiency as compared to the noninteracting linear sink efficiency at a room temperature. The elastic fields of edge dislocations increase the dislocation sink efficiency, whereas the elastic fields of screw dislocations either decrease this parameter (in the case of dislocations with the Burgers vector being 1/2〈111〉) or do not affect it (in the case of dislocations with the Burgers vector being 〈100〉). At temperatures above 600 K, the dislocations affect the behavior of hydrogen in bcc iron mainly owing to a high binding energy between the hydrogen atom and dislocation cores.  相似文献   

16.
To elucidate the effect of stacking fault energies (SFEs) on defect formation by the collision cascade process for face-centred cubic metals, we used six sets of interatomic potentials with different SFEs while keeping the other properties almost identical. Molecular dynamic simulations of the collision cascade were carried out using these potentials with primary knock-on atom energies (EPKA) of 10 and 20 keV at 100 K. Neither the number of residual defects nor the size distributions for both self-interstitial atom (SIA) type and vacancy type clusters were affected by the difference in the SFE. In the case of EPKA = 20 keV, the ratio of glissile SIA clusters increased as the SFE decreased, which was not expected by a prediction based on the classical dislocation theory. The trend did not change after annealing at 1100 K for 100 ps. For vacancy clusters, few stacking fault tetrahedrons (SFTs) formed before the annealing. However, lower SFEs tended to increase the SFT fraction after the annealing, where large vacancy clusters formed at considerable densities. The findings of this study can be used to characterise the defect formation process in low SFE metals such as austenitic stainless steels.  相似文献   

17.
 采用周期性原子阵列方法建立bcc Fe中的刃型位错,利用分子动力学计算了0 K时bcc Fe的位错芯里氦-空位团的稳定性,并与理想Fe晶体里氦-空位团的稳定性进行比较发现,位错的作用导致氦-空位团不稳定。点缺陷(He、空位与自间隙Fe原子)与氦-空位团的结合能与团中氦-空位比例密切相关,当氦与空位数之比在3~6时,结合能趋于稳定。  相似文献   

18.
Clusters of self-interstitial atoms are formed in metals by high-energy displacement cascades, often in the form of small dislocation loops with a perfect Burgers vector. In isolation, they are able to undergo fast, thermally activated glide in the direction of their Burgers vector, but do not move in response to a uniform stress field. The present work considers their ability to glide under the influence of the stress of a gliding dislocation. If loops can be dragged by a dislocation, it would have consequences for the effective cross-section for dislocation interaction with other defects near its glide plane. The lattice resistance to loop drag cannot be simulated accurately by the elasticity theory of dislocations, so here it is investigated in iron and copper by atomic-scale computer simulation. It is shown that a row of loops lying within a few nanometres of the dislocation slip plane can be dragged at very high speed. The drag coefficient associated with this process has been determined as a function of metal, temperature and loop size and spacing. A model for loop drag, based on the diffusivity of interstitial loops, is presented. It is tested against data obtained for the effects of drag on the stress to move a dislocation and the conditions under which a dislocation breaks away from a row of loops.  相似文献   

19.
The dislocation mechanisms of formation of the ductile–brittle transition temperature and the low-temperature brittle fracture of metals (single crystals, polycrystals) with various crystal lattices (bcc, fcc, hcp) are considered. The conditions of appearance of cold shortness and intracrystalline crack propagation (brittle fracture) are determined. These conditions can be met in bcc and some hcp metals and cannot be met in fcc and many hcp metals. The nondestructive internal friction (at 100 kHz) method is used to determine the temperature ranges of cold shortness (ductile–brittle transition temperatures) in bcc metals (ferritic–martensitic EK-181 steel, V–4Ti–4Cr alloy), which depend on their structure–phase state and strength (yield strength).  相似文献   

20.
Emmanuel Clouet 《哲学杂志》2013,93(19):1565-1584
We derive an expression of the core traction contribution to the dislocation elastic energy within linear anisotropic elasticity theory using the sextic formalism. With this contribution, the elastic energy is a state variable consistent with the work of the Peach–Koehler forces. This contribution needs also to be considered when extracting from atomic simulations core energies. The core energies thus obtained are real intrinsic dislocation properties: they do not depend on the presence and position of other defects. This is illustrated by calculating core energies of edge dislocation in bcc iron, where we show that dislocations gliding in {110} planes are more stable than those gliding in {112} planes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号