首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
This study reports synthesis of Al65Cu20Ti15 amorphous alloy by mechanical alloying and consolidation of the powder mass by pulsed plasma sintering. During sintering, several intermetallic phases precipitate from the amorphous matrix and cause a significant increase in nano-hardness and elastic modulus. Microstructure in as-milled and sintered conditions was characterized by X-ray diffraction, scanning/transmission electron microscopy and differential scanning calorimetric. Among various conditions of sintering, the composites pulse plasma, sintered at 500°C, show the high compression strength (1745 MPa) and high indentation fracture toughness (4.96 MPa m1/2); although, the maximum density (3.73 Mg/in3), nano-hardness (14 GPa) and Young's modulus (208 GPa) in the present alloy have been obtained in the composites pulse plasma sintered at 600°C.  相似文献   

2.
Mg-AZ91E/TiCp composite was fabricated using a spontaneous infiltration technique at 950 °C under an argon atmosphere. The composites produced have 37 vol.% of metal matrix and 63 vol.% of TiC-like reinforcement. The obtained composites were subsequently solution heat-treated at 413 °C during 24 h, cold water quenched, and subsequently artificially aged at 168 and 216 °C during 16 h in an argon atmosphere. Effect of heat treatment on the microstructure and mechanical properties was evaluated. Microstructural characterization was analyzed using different techniques such as X-ray diffraction (XRD) and scanning electron microscopy (SEM). Interface between matrix and reinforcement was examined using transmission electron microscopy (TEM), and mechanical properties were evaluated by measuring the elastic modulus and hardness. Mg, TiC, Al, and Mg17Al12 phases through XRD were detected. Meanwhile, using TEM analysis in heat-treated composites MgAl2O4, MgO, and Al2O3 were identified. The as-fabricated composite have elastic modulus and hardness of 162 GPa and 316 Hv, respectively. After solution heat treatment and aging at 168 °C during 12 h, the composites reaches values of 178 GPa and 362 Hv for the elastic modulus and hardness, respectively. Time of aging was correlated with measures of elastic modulus and hardness.  相似文献   

3.
This work studied the effects of matrix powder and sintering temperature on the microstructure and mechanical properties of in situ formed Ti–Al3Ti core–shell-structured particle-reinforced pure Al-based composites. It has been shown that both factors have significant effects on the morphology of the reinforcements and densification behaviour of the composites. Due to the strong interfacial bonding and the limitation of the crack propagation in the intermetallic shell during deformation by soft Al matrix and Ti core, the composite fabricated using fine spherical-shaped Al powder and sintered at 570 °C for 5 h has the optimal combination of the overall mechanical properties. The study provides a direction for the optimum combination of high strength and ductility of the composites by adjusting the fabrication parameters.  相似文献   

4.
K.C. Chung  F.L. Kwong  Jia Li 《哲学杂志》2013,93(19):1535-1553
The reaction mechanisms between Al and Fe3O4 powders were investigated. Differential thermal analysis revealed that a two-step displacement reaction between Al and Fe3O4 took place during sintering. Initially, the Fe3O4 was converted to amorphous FeO at ~720°C and some of the Al was oxidized to amorphous Al2O3. In the final stage, when the temperature reached ~840°C, crystalline Al2O3 particles were produced in the molten Al–Fe liquid. The effects of cooling rate on the microstructures were studied. When the Al–Fe liquid was furnace-cooled to room temperature, proeutectic Al3Fe plates, plate-like divorced eutectic Al3Fe and Al2O3 particles were in situ formed in the Al(Fe) matrix. While quenching from 700°C, nanometer-sized Al dendrites and Al–Al6Fe eutectic lamellae were produced in the Al matrix. However, when it was rapidly quenched from 900°C, the size of the proeutectic Al3Fe phases was further reduced and Al6Fe nanorods were found in the Al–Al6Fe eutectics. A model was proposed to describe the transformation of the Al–Fe intermetallics during solidification.  相似文献   

5.
Ferritic steel with compositions 83.0Fe–13.5Cr–2.0Al–0.5Ti (alloy A), 79.0Fe–17.5Cr–2.0Al–0.5Ti (alloy B), 75.0Fe–21.5Cr–2.0Al–0.5Ti (alloy C) and 71.0Fe–25.5Cr–2.0Al–0.5Ti (alloy D) (all in wt%) each with a 1.0?wt% nano-Y2O3 dispersion were synthesized by mechanical alloying and consolidated by pulse plasma sintering at 600, 800 and 1000°C using a 75-MPa uniaxial pressure applied for 5?min and a 70-kA pulse current at 3?Hz pulse frequency. X-ray diffraction, scanning and transmission electron microscopy and energy disperse spectroscopy techniques have been used to characterize the microstructural and phase evolution of all the alloys at different stages of mechano-chemical synthesis and consolidation. Mechanical properties in terms of hardness, compressive strength, yield strength and Young's modulus were determined using a micro/nano-indenter and universal testing machine. All ferritic alloys recorded very high levels of compressive strength (850–2850?MPa), yield strength (500–1556?MPa), Young's modulus (175–250?GPa) and nanoindentation hardness (9.5–15.5?GPa), with up to 1–1.5 times greater strength than other oxide dispersion-strengthened ferritic steels (<1200?MPa). These extraordinary levels of mechanical properties can be attributed to the typical microstructure of uniform dispersion of 10–20-nm Y2Ti2O7 or Y2O3 particles in a high-alloy ferritic matrix.  相似文献   

6.
Magnetic properties have been investigated on Mn doped TiO2(Ti0.98Mn0.02O2) bulk samples prepared by solid state reaction, which were sintered at different temperature ranging from 450 °C to 900 °C in air and argon atmosphere, respectively. The results show that the magnetic properties were strongly dependent on the sintering temperature and atmosphere. For samples sintered in air, the magnetization initially increase with the increase of sintering temperature up to 600 °C and thereafter it decrease. While the magnetization of samples sintered in argon atmosphere decreases monotonically with the increase of sintering temperature. Furthermore, for samples sintered at 600 °C in air, the magnetic susceptibility exhibits a dominant Curie-Weiss behaviour and no magnetic transition is observed over the temperature range from 10 to 300 K. In contrast, for samples sintered in argon atmosphere, besides the magnetic transition near 45 K perhaps caused by Mn3O4, another magnetic transition appears near room temperature.  相似文献   

7.
Single crystalline Al2O3 fibres (sapphire), coated with the NiAl alloy IP75 by physical vapour deposition (PVD), were assembled to fabricate composites by means of diffusion bonding. The microstructure and chemistry of both as-coated fibre and as-diffusion bonded composites were investigated by electron microscopy and microanalysis. The interface shear stress for complete debonding was measured by fibre push-out tests at room temperature, and the composite tensile strength was measured at 900°C and 1100°C. An amorphous layer with a thickness of about 400?nm formed between the fibre and the matrix during the PVD process and was maintained during diffusion bonding. A Laves phase precipitated along NiAl grain boundaries in the IP75 matrix. This caused a lower tensile strength of the IP75/Al2O3 composite at high temperatures compared to as-cast monolithic IP75 and rendered the composite useless for structural applications.  相似文献   

8.
Single-phase multiferroic BiFeO3 (BFO) powders were prepared by hydrothermal microwave synthesis and dense BiFeO3 ceramics were fabricated for the first time by the low-temperature high-pressure (LTHP) sintering technique. Effect of sintering temperature ranging from 400 to 800 °C (3 min and 10 min) and pressure of 3–8 GPa on structural, microstructural, electric and magnetic properties were investigated through X-ray diffraction, scanning electron microscope (SEM), electrochemical impedance spectroscopy (EIS), density and magnetic measurements. The results highlighted that LTHP sintering method, thanks to the high pressure involved, requires lower temperature and shorter time than other techniques, avoiding BiFeO3 phase degradation. SEM images show that for short experimental time (t = 3 min) the average grain size of the sintered samples was approximately the same size of raw powder. Extending the sintering time up to 10 min the grain growth phenomena occurred. Moreover the results indicate that the best obtained density value was around 98% of theoretical density. The dielectric behavior of BiFeO3 ceramics was not significantly influenced by the LTHP sintering conditions. Magnetic measurements showed that ceramic BiFeO3 is weakly ferromagnetic at room temperature.  相似文献   

9.
Li1,3Ti0,7Al0,3(PO4)3 (LATP) powder was obtained by a conventional melt-quenching method and consolidated by field-assisted sintering technology (FAST) at different temperatures. Using this technique, the samples could be sintered to relative densities in the range of 93 to 99 % depending on the sintering conditions. Ionic and thermal conductivity were measured and the results are discussed under consideration of XRD and SEM analyses. Thermal conductivity values of 2 W/mK and ionic conductivities of 4?×?10?4 Scm?1 at room temperature were obtained using relatively large particles and a sintering temperature of 1000 °C at an applied uniaxial pressure of 50 MPa.  相似文献   

10.
In order to study the influence of powder calcination temperature on lithium ion conductivity, synthesized Li1.3Ti1.7Al0.3(PO4)3 (LATP) was calcined at temperatures between 750 and 900 °C. The shape and size of the particles were characterized employing scanning electron microscopy (SEM), and specific surface area of the obtained powder was measured. The crystallinity grade of different heat-treated powders was calculated from XRD spectra. Posteriorly, all powders were sintered at 1100 °C employing field-assisted sintering (SPS), and the electrical properties were correlated to the calcination conditions. The highest ionic conductivity was observed for samples made out of powders calcined at 900 °C.  相似文献   

11.
Solid electrolyte Li1.3Al0.3Ti1.7(PO4)3 was prepared by sol-gel method under different sintering conditions. The structural identification, surface morphology, electrochemical window, ionic conductivity, and activation energy of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets were investigated by X-ray diffraction, scanning electron microscopy, cyclic voltammetry, and electrochemical impedance spectroscopy. It is found that the sintering temperature and time have considerable effect on the properties of the Li1.3Al0.3Ti1.7(PO4)3 sintered pellets. The Li1.3Al0.3Ti1.7(PO4)3 pellet sintered at 900 °C for 2 h is denser than the pellets sintered at other conditions. Different sintering conditions result in the sintered pellet with different porosity. However, the sintering conditions have little effect on the electrochemical window of Li1.3Al0.3Ti1.7(PO4)3. Among the Li1.3Al0.3Ti1.7(PO4)3 pellets sintered at various conditions, the pellet sintered at 900 °C for 2 h shows the highest ionic conductivity of 3.46 × 10−4 S cm−1 and the lowest activation energy of 0.2821 eV.  相似文献   

12.
3Y-ZrO2-Ti composites obtained by slip casting method were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Moreover, the Vickers hardness was measured. The experiments show the complex microstructure of composites. The tetragonal zirconium dioxide (t-ZrO2) and monoclinic zirconium dioxide (m-ZrO2) as a composite matrix were detected at XRD analysis. SEM observations revealed that Ti -rich phase are uniform distributed in composites. Moreover, the large and very fine precipitations were found. The very fine Ti rich precipitations were located at ZrO2 grain boundaries as well as in the triple-points. TEM experiments confirmed that in the sintered composites 3Y-ZrO2 – 10%Ti the uniaxial ZrO2 grains (100–600 nm), fine monoclinic martensitic plates and fine round monoclinic particles (20–40 nm) of ZrTiO2 phase were exist. The complex microstructures of 3Y-ZrO2-Ti composites have a high hardness as a result of existing fine ZrTiO2 and other Ti oxides precipitations.  相似文献   

13.
The mechanical properties of a rare sample of kaolinite macroscopic crystals were evaluated using instrumented indentation. The crystals were also characterized by X-ray diffraction, scanning electron microscopy, atomic force microscopy and Fourier transform infrared spectroscopy before and after heat treatment at 1100°C. The results are explained in terms of the fracture process occurring in the layered structure of kaolinite, and of the effect of roughness on the hardness and elastic modulus. Data analysis using One-way ANOVA (p?<?0.05) showed that the values of hardness and elastic modulus obtained are statistically homogeneous. Before heat treatment, the sample was composed essentially of kaolinite, with hardness of 42?MPa and elastic modulus equal to 1.3?GPa. After calcination at 1100°C, the sample keeps its layered habit and consists of amorphous metakaolinite. The hardness increases to 360?MPa and the elastic modulus increases to 6.9?GPa.  相似文献   

14.
The characteristics of a BaO–Al2O3–B2O3–SiO2–La2O3 glass ceramic prepared by spray pyrolysis were studied. Glass powders with spherical shape and amorphous phase were prepared by complete melting at a preparation temperature of 1 500°C. The mean size and geometric standard deviation of the powders prepared at the temperature of 1 500°C were 0.6 μm and 1.3. The glass powders had similar composition to that of the spray solution. The glass transition temperature (T g) of the glass powders was 600.3°C. Two crystallization exothermic peaks were observed at 769.3 and 837.8°C. Densification of the specimen started at a sintering temperature of 600°C, in which Ba4La6O(SiO4)6 as main crystal structure was observed. Complete densification of the specimen occurred at a sintering temperature of 800°C. The specimens sintered at temperatures above 800°C had main crystal structure of BaAl2Si2O8.  相似文献   

15.
This work focused on fracture toughness studies of WC–10?wt% Co hardmetal fabricated through the high pressure/high-temperature technique. A powder mixture of WC–10?wt% Co was sintered at 1500–1900°C under a pressure of 7.7?GPa for 2 and 3?min. Vickers hardness test at two different loads of 15 and 30?kgf was done and fracture toughness of the sintered bodies was measured using the indentation method to obtain the effect of sintering parameters. Structural analyses were also performed via X-ray diffraction to investigate structure-related properties. Full density was achieved for high sintering temperature along with abnormal grain growth that reduced hardness. High hardness was observed ranging from 1200 to 1670?HV and fracture toughness increased with increasing sintering temperature up to the highest value of 17.85?MPa/m1/2.  相似文献   

16.
The addition of carbon nanotubes (CNT) in ceramic composites has stimulated a substantial interest due to their high mechanical, thermal and electrical properties. This approach used fluoride additives (AlF3 and MgF2) to prepare multi-walled carbon nanotubes/silicon nitride (MWCNT/Si3N4) composite densified at 1700 °C for 1 h by hot press (HP) sintering. The microstructural analyses of MWCNT/Si3N4 composites indicate that the fluoride additives have substantially improved densification and the transformation of α-Si3N4 to β-Si3N4. As observed, the mechanical properties, i.e. flexural strength, fracture toughness, Young's modulus and hardness of MWCNT/Si3N4 composites are improved with an increasing concentration of MWCNT. These results attributed to the highly dense composites, strong interfacial interaction and the pull-out mechanism of MWCNT and β-Si3N4. The maximum values of fracture toughness flexural strength, Young's modulus, and hardness were 12.76 ± 1.15 MPa.m0.5, 883 ±46 MPa, 260 ±9 GPa, and 26.4 ± 1.3 GPa, respectively. The improved mechanical properties also ascribed to the synergistic strengthening and toughening influence of MWCNT and β-Si3N4.  相似文献   

17.
Raman studies of nanocomposite SiCN thin film by sputtering showed that with increase of substrate temperature from room temperature to 500 °C, a transition from mostly sp2 graphitic phase to sp3 carbon took place, which was observed from the variation of ID/IG ratio and the peak shifts. This process resulted in the growth of C3N4 and Si3N4 crystallites in the amorphous matrix, which led to increase in hardness (H) and modulus (E) obtained through nanoindentation. However, at a higher temperature of 600 °C, again an increase of sp2 C concentration in the film was observed but the H and E values showed a decrease due to increased growth of the graphitic carbon phase. The whole process got reflected in a modified four‐stage Ferrari–Robertson model of Raman spectroscopy. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
The 50 vol% SrTiO3/yttria-stabilized zirconia (YSZ) composite ceramic was prepared through powder sintering route in 1400~1500 °C. Only the cubic YSZ and SrTiO3 phases are detected in all the sintered ceramics, and the typical XRD peak positions of both phases have varied dramatically. The grain sizes and relative densities of all specimens increase evidently with the sintering temperature. The width of the SrTiO3/YSZ interfacial region increases from 100.4 to 468.8 nm as the sintering temperature rises from 1400 to 1500 °C. The total electrical conductivities of the sample sintered at 1500 °C are remarkably higher than those at 1400 and 1450 °C, while the ion transference numbers drop from 0.837 to 0.731 with sintering temperature from 1400 to 1500 °C. The variations in the electrical properties above can be interpreted based on the effects of sintering temperature on the elemental diffusions during the sintering process.  相似文献   

19.
Polycrystalline diamond was investigated under high pressure and high temperature of 5.0 GPa and 1100–1500 °C in the presence of tungsten. In situ resistance measurements indicated that reactions between diamond and tungsten happened at about 960 °C. Phase analysis demonstrated that WC increased and meta-stability of W2C decreased clearly at the higher temperature. It is clear from the characterization of the sintered body that the electrical resistance decreased and the density of specimens increased as the sintering temperature rose. The specimen sintered at 1500 °C has a homogeneous microstructure and good conductivity.  相似文献   

20.
The present work describes the formation of amorphous alloys in the (Al1?xCex)62Cu25Fe13 quaternary system (0 ≤ x ≤ 1). When the amount of Ce falls in the range 0.67 ≤ x ≤ 0.83, the alloys obtained exhibit a completely amorphous structure confirmed by powder X-ray diffraction. Otherwise, at compositions x = 0.5, 0.58, 0.92 and 1, a primary crystalline phase forms together with an amorphous matrix. The crystallisation temperature (Tx) decreases with increasing Ce content, varying from 593 K for x = 0.5–383 K for x = 1. Composition x = 0.75 is considered as the best glass former, exhibiting a large supercooled liquid region of 40 K width that precedes crystallisation. In order to form bulk amorphous alloys, ribbons with this later composition were consolidated into few millimetre thick discs using pulsed electric current sintering at different temperatures, yet preserving the amorphous structure. Meanwhile, increasing temperature above 483 K triggers crystallisation of a primary phase isostructural to AlCe3. Further increase in the temperature up to 573 K yields a higher fraction of the crystalline phase. Testing mechanical properties, using nanoindentation, revealed that both elastic modulus (E) and hardness (H) depend on the Al content, ranging from E = 85.6 ± 3.7 GPa and H = 6.2 ± 0.7 GPa for x = 0.5 down to E = 39.8 ± 1.0 GPa and H = 3.1 ± 0.2 GPa for x = 0.92.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号