首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Hardness and Young's modulus were measured by nanoindentation on a series of electrodeposited nanocrystalline nickel and nickel–iron alloys. Hardness values showed a transition from regular to inverse Hall–Petch behaviour, consistent with previous studies. There was no significant influence of grain size on the Young's modulus of nanocrystalline nickel and nickel–iron alloys with grain sizes greater than 20?nm. The Young's modulus values for nanocrystalline nickel and nickel–iron alloys for grain sizes less than 20?nm were slightly reduced when compared to their conventional (randomly oriented) polycrystalline counterparts. The observed trend with decreasing grain size was found to be consistent with composite model predictions that consider the influence of intercrystalline defects. However, there was some notable variability of the measured values when compared to the model predictions. Three theoretical relationships were used to characterise the anisotropic elastic behaviour of these materials. As a result, texture was also considered to have an influence on the measured Young's modulus and used to explain some of the observed variability for the entire grain size range (9.8–81?nm).  相似文献   

2.
A model describing mechanical behaviour of nanocrystalline materials (NC) obtained by crystallization from amorphous precursor is presented. In the framework of this model a structure of such NCs is represented as a composite consisting of amorphous matrix and absolutely rigid inclusions corresponding to crystalline phase. Dependencies of stress concentration coefficient and yield stress of NCs on the average grain size are obtained. It is shown that the dependence of the yield stress has a point of inflection at the critical grain size in the range of 20–25 nm and is inverse to the Hall-Petch relationship at grain sizes smaller than the critical one. The model predicts a formation of a superlattice from disclinations located in triple junctions of grains on the stage of NC plastic flow. A process of the plastic flow of NC's amorphous matrix and amorphous metallic alloys is described as a go-ahead mechanism of dislocation movement, which includes emission, absorption and reemission of dislocations by disclinations.  相似文献   

3.
石墨烯力学性能的研究对其在半导体技术中的应用是十分重要的,本文基于半连续体模型并结合石墨烯纳米结构特性,通过对原子的描述构建了石墨烯形变分量和位移分量的新关系,从而给出了单层石墨烯结构形变能,并计算了不同尺寸单层石墨烯的杨氏模量值.通过对不同方向杨氏模量的分析,讨论了单层石墨烯的手性行为.结果表明:随着尺寸的增加,单层石墨烯两个方向的杨氏模量分别趋于0.746 TPa和0.743 TPa,当尺寸相同时,两方向杨氏模量的最大差值不超过0.003 TPa,此结果与文献报道结果相符.在小应变情况下,单层石墨烯薄膜呈各向同性,且薄膜尺寸变化对该特性影响不大.该计算结果对研究石墨烯的其它力学特性提供一定的参考价值.  相似文献   

4.
Silicon nanomembrane (SiNM) has drawn great attention for the application in nanoelectrical devices as it shows excellent flexibility and is compatible with the integrated circuit process. The mechanical property measurement of the SiNM with nanoscale thickness is critical. A suspended SiNM (40 nm thick) for mechanical measurements is fabricated by transferring a chemically etched ultrathin monocrystalline silicon film from silicon on insulator wafer to a substrate with a multi-hole array. And then, the atomic force probe is utilized to load force on the free-standing SiNM to obtain a force deflection curve, and then the Young's modulus of such floating SiNM can be directly calculated based on the large deflection plane model. It shows that the Young's modulus of such SiNM is basically consistent with that of the bulk silicon. However, the SiNMs’ floating area significantly affects the results, i.e., the Young's modulus varies with the ratio of the suspended area diameter (i.e., hole diameter) to the film thickness. The Young's modulus is independent of hole diameter when the ratio is greater than 425. According to this relationship, the variation of Young's modulus can be predicted for arbitrary thick SiNMs and any transferable nanofilms.  相似文献   

5.
Nanoscale fracture and strain-induced structure variation of ZnO nanocones are determined using in situ transmission electron microscopy compression experiments. For the single-crystalline nanocones with diameters of 100–300 nm, the Young's modulus is in the range of 7.7–48 GPa and the ultimate tensile strength is in the range of 2.4–4.3%. The Young's modulus and tensile strength increase with decreasing diameter. Here, we report the nanogenerator of ZnO nanocones can be used mechanical energy to output 90 nW/mm2.  相似文献   

6.
The mobility of individual triple junctions in aluminum is studied. Triple junctions with 〈111〉, 〈100〉, and 〈110〉 tilt boundaries are studied. The data obtained show that, at low temperatures, the mobility of the system of grain boundaries with a triple junction is controlled by the mobility of the triple junction (the junction kinetics). At high temperatures, the system mobility is determined by the mobility of the grain boundaries (the boundary kinetics). There is a temperature at which the transition from the junction kinetics to the boundary kinetics occurs; this temperature is determined by the crystallographic parameters of the sample.  相似文献   

7.
King [1] established that due to the discrete nature of their dislocation structure, finite length grain boundaries (GBs) in polycrystalline materials possess discrete values of misorientation angle. For a GB with a length that is not a multiple of the GB period, this leads to the formation of specific disclinations at their junctions with neighboring GBs, which compensate the difference between the misorientations of finite and infinite boundaries. In the present paper the origin of these compensating disclinations within GB triple junctions is elucidated and their strength is calculated using the disclination-structural unit model. It is shown that for a GB with length of about 10 nm the junction disclinations can have a strength value not more than 1°, in contrast to King's calculations that indicate much larger values. Elastic energies of triple junctions due to compensating disclinations are calculated for both equilibrium and non-equilibrium structures of a finite length GB, which differ by the position of the grain boundary dislocation network with respect to the junctions. The calculations show that triple junction energies are comparable to dislocation energies, and that compensating disclinations can play a significant role in the properties of nanocrystalline metals with grain sizes less than about 10 nm.  相似文献   

8.
Polymers reinforced with natural fibers are beneficial to prepare biodegradable composite materials. A new expression for the Young's modulus of short, natural fiber (SNF) reinforced polymer composites was derived based on a micro-mechanical model. The Young's moduli of poly(lactic acid) reinforced with reed fibers and low-density polyethylene (LDPE) reinforced with sisal fibers, from literature data, were estimated in the fiber weight fraction range from 0 to 50% using the equation and both the compounding rule and the Halpin–Tsai equation, and the estimations were compared with the reported measured data. The results showed that the predictions of the Young's moduli by means of the new Young's modulus equation were close to the measured data from the low density polyethylene/sisal fiber composites, as well as the poly(lactic acid)/reed composites at high fiber concentration. Comparing with other Young's modulus equations, the new Young's modulus equation would be more convenient to use owing to the parameters in the equation being easily determined.  相似文献   

9.
珠光体是十分重要的组织结构,因此本文构建了含铁素体-渗碳体相界面的模型,并采用分子动力学模拟方法模拟纳米压入的过程。通过对模拟结果的力学性能和组织结构分析,探究了铁素体-渗碳体相界面效应。研究发现,距铁素体-渗碳体晶界不同距离(位置压入),在压入最初阶段,压头载荷随着压头与晶界距离的增大而增大,当压入深度达到一定深度后,载荷随着距离的增大而减小。杨氏模量和最大剪切模量受压头尖端下方原子结构的直接影响,硬度受到结构完整性和类型的共同影响。铁素体-渗碳体相界面影响了纳米压入过程中位错形核、增殖和扩展,宏观表现为在相同压入深度下,不同压入位置压头载荷的差异。  相似文献   

10.
The self-consistent charge density functional based tight-binding method is used to calculate the effect of curvature on the structure, average energy of atoms and Young's modulus of armchair single-wall carbon nanotubes (SWCNTs) under axial strains. We found that as the amount of curvature increases, the average energy of atoms and the Young's modulus decrease and the equilibrium CC distance increases for (7,7) SWCNTs. However, we also found that the average energy of atoms and Young's modulus of (5,5) SWCNTs are weakly affected by increasing the amount of curvature. Our results also show that the average energy of atoms and Young's modulus of smaller diameter armchair nanotubes are smaller than that of the larger diameter ones.  相似文献   

11.
The ternary amorphous systems CoxSi5B95?x with 7070Si y B30?y with 5<y<18 were studied for their mechanical properties at room temperature. Structure sensitive parameters as density, Young's modulus, micro-hardness and crystallization temperature were investigated as a function of Co and Si contents. The value of density increases with higher Co content but not linearly as for Co-B. Young's modulus, micro-hardness and crystallization temperature decrease with increasing Co concentration. The packing fractionη was calculated using 12-coordinated Goldschmidt atomic radii. It is shown that changes in the proportions of metalloids contents in the alloys have more significant influence on the atomic structure and therefore on the mechanical properties than changes of Co content. The maximum tensile elastic strain for the Co-Si-B system was estimated. Influence of magnetic moment on Young's modulus is discussed.  相似文献   

12.
Composites with partially amorphous matrix were synthesized by mechanical alloying of an Al50Ti40Si10 elemental powder blend in a high energy planetary ball-mill, followed by high pressure (8 GPa) low temperature (350–450°C) sintering. Microstructural studies and compositional micro-analysis were carried out using scanning and transmission electron microscopy, and energy dispersive spectroscopy, respectively. Phase evolution as a function of milling time and isothermal temperature and their thermal stability was determined by X-ray diffraction at room or elevated temperature and differential scanning calorimetry, respectively. The microstructure of composites sintered between room temperature and 450°C showed nano-size (≈50 nm) crystalline precipitates of Al3Ti dispersed in an amorphous matrix. The composites sintered at 400°C with 8 GPa pressure exhibited the highest density (3.58 Mg/m3), nanoindentation hardness (8.8 GPa), Young's modulus (158 GPa) and compressive strength (1940 MPa). A lower hardness and modulus on sintering at 450°C is attributed to additional amorphous to nanocrystalline phase transformation and partial coarsening of Al3Ti.  相似文献   

13.
《Ultrasonics》2005,43(2):87-93
Surface Brillouin spectroscopy (SBS) has been widely used for elastic property characterization of thin films. For films thicker than 500 nm, however, the wavelength of surface acoustic wave in the frequency range available for SBS is smaller than film thickness, and the SBS measures only the Rayleigh wave of the film. The laser-SAW technique, on the other hand, measures only the low-frequency portion of the surface acoustic wave dispersion and can estimate only one elastic modulus of the film (typically Young's modulus). In this work, we have combined the two methods to determine both Young's modulus and Poisson's ratio of a diamond-like carbon (DLC) film. It was found that reasonable estimates can be obtained for the longitudinal wave velocity, shear wave velocity, and Young's modulus of the film. The Poisson's ratio, however, still has a relatively large measurement error.  相似文献   

14.
《Physics letters. A》2005,346(4):321-326
Electron-doped manganite Sr0.8Ce0.2MnO3 has been systematically investigated by X-ray diffraction, electronic transport, magnetic, internal friction, and Young's modulus experiments. The X-ray diffraction result indicates that the compound remains tetragonal (I4/mcm) structure at room temperature. Due to the strong Jahn–Teller (JT) distortion, the ground state is antiferromagnetic (AFM) insulator. Below 20 K, a spin-glass (SG) state dominates at low temperatures. In the paramagnetic (PM) region, an internal friction peak at around 250 K, which is characteristic of relaxation, has been observed. Under applied magnetic field, the internal friction peak moves to higher temperature, which is suggested to originate from the formation of ferromagnetic (FM) clusters in PM region. In addition, the softening of Young's modulus in the vicinity of AFM transition temperature is interpreted in terms of the strong electron–phonon interaction.  相似文献   

15.
The mechanical properties of bicrystalline graphene nanoribbons with various tilt grain boundaries (GBs) which typically consist of repeating pentagon–heptagon ring defects are investigated based on the method of molecular structural mechanics. The GB models are constructed via the theory of disclinations in crystals, and the elastic properties and ultimate strength of bicrystalline graphene nanoribbons are calculated under uniaxial tensile loads in perpendicular and parallel directions to grain boundaries. The dependence of mechanical properties is analyzed on the chirality and misorientation angles of graphene nanoribbons, and the experimental phenomena that Young's modulus and ultimate strength of bicrystalline graphene nanoribbons can either increase or decrease with the grain boundary angles are further verified and discussed. In addition, the influence of GB on the size effects of graphene Young's modulus is also analyzed.  相似文献   

16.
We present first-principle calculations on the structural, elastic, and high-pressure properties of rubidium halides compounds, using the pseudo-potential plane-waves approach based on density functional theory, within the generalized gradient approximation. Results are given for lattice constant, bulk modulus and its pressure derivative. The pressure transition at which these compounds undergo structural phase transition from NaCl-type to CsCl-type structure are calculated and compared with previous calculations and available experimental data. The elastic constants and their pressure dependence are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young's modulus and Poisson's ratio for ideal polycrystalline RbF, RbCl, RbBr, and RbI aggregates. We estimated the Debye temperature of these compounds from the average sound velocity.  相似文献   

17.
Some phyllosilicate compounds have the ability of spontaneous scrolling because of the size mismatch between the covalently bounded metal oxide and silica sheets. Their unique structure and high theoretically predicted Young's modulus (around 210–230 GPa) induce phyllosilicates’ application as reinforcing fillers. However, previous nanomechanical experiments with individual phyllosilicate nanoscrolls are in poor agreement with theory. The main reason for this is the low accuracy of experiments, which leads to large measurement errors compared to measured average values. Here, the study of the mechanical properties of synthetic (Mg1–xNix)3Si2O5(OH)4 phyllosilicates is reported by testing a suspended nanoobject (a nanobridge) with an atomic force microscope (AFM). The Young's modulus of corresponding phyllosilicate model layers is also calculated by means of the density functional theory (DFT). The original AFM approach makes it possible to account for the probe slipping off the nanobridge and determine its boundary conditions. The measured Young's modulus values are considered within the models of surface tension and shear strain contributions. The shear strain appears to have a decisive impact on the measured Young's modulus (from 150 ± 70 GPa to 200 ± 210 GPa) and its spread.  相似文献   

18.
The hardness and Young's modulus of 10 and 20 nm gold nanoparticles (Au NPs) modified with bovine serum albumin and streptavidin were measured using a nanoindenter. The Au NPs were immobilized on a semiconductor surface through organic self-assembled monolayers. Changes in mechanical properties occurred when the Au NPs were immobilized on the surface. The hardness and Young's modulus were dependent on the size of the NPs, and the proteins on the particles showed highly plastic and elastic behavior compared to flat surfaces modified with self-assembled monolayers.  相似文献   

19.
《Current Applied Physics》2018,18(4):411-416
The viscous thermal flow behavior and mechanical property of [Fe0.6Co0.15B0.2Si0.05] (100−x)Tax (x = 0, 1, 2, 3, 4, and 5) soft magnetic amorphous ribbons were studied. The characteristics of melt-spun amorphous ribbons were measured by using vibration sample magnetometer (VSM), nanoindentation, differential scanning calorimetry (DSC) and thermo-mechanical analysis (TMA) to study the effects of Ta content variation on the thermal stability, mechanical, and soft magnetic properties. We observed that the nanoindentation hardness, Young's modulus, and glass transition and crystallization temperatures were improved by the addition of Ta. Using dilatometry measurement, TMA, by heating at a constant rate under tension mode, we examined not only the glass transition and crystallization behaviors but also the possibility of coexistence of multiple amorphous phases.  相似文献   

20.
The structural and mechanical properties of LnO (Ln=Sm, Eu, Yb) compounds have been investigated using a modified interionic potential theory, which includes the effect of Coulomb screening. We predicted a structural phase transition from NaCl (B1)- to CsCl (B2)-type structure and elastic properties in LnO compounds at very high pressure. The anomalous properties of these compounds have been correlated in terms of the hybridisation of f-electrons of the rare earth ion with conduction band and strong mixing of f-states of lanthanides with the p-orbital of neighbouring chalcogen ion. For EuO, the calculated transition pressure, bulk modulus and lattice parameter are close to the experimental data. The nature of bonds between the ions is predicted by simulating the ion-ion (Ln-Ln and Ln-O) distances at high pressure. The second order elastic constants along with shear modulus and Young's modulus, elastic anisotropy and Poisson's ratio are also presented for these oxides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号