首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
A thermomechanical model is developed within a large deformation setting in order to simulate the interactions between martensitic phase transformations and crystalline damage growth at the austenitic grain level. Subgrain information is included in the model via the crystallographic theory of martensitic transformations. The damage and transformation characteristics are dependent of the specific martensitic transformation systems activated during a loading process, which makes the model strongly anisotropic. The state of transformation for the individual transformation systems is represented by the corresponding volume fractions. The state of damage in the austenite and in the martensitic transformation systems is reflected by the corresponding damaged volume fractions. The thermodynamical forces energetically conjugated to the rate of volume fraction and the rate of damaged volume fraction are the driving forces for transformation and crystalline damage, respectively. The expressions for these driving forces follow after constructing the specific form of the Helmholtz energy for a phase-changing, damaging material. The model is used to analyze several three-dimensional boundary value problems that are representative of microstructures appearing in multiphase carbon steels containing retained austenite. The analyses show that the incorporation of damage in the model effectively limits the elastic stresses developing in the martensitic product phase, where the maximum value of the stress strongly depends on the toughness of the martensite. Furthermore, in an aggregate of randomly oriented grains of retained austenite embedded in a ferritic matrix the generation of crystalline damage delays the phase transformation process, and may arrest it if the martensitic product phase is sufficiently brittle. The response characteristics computed with the phase-changing damage model are confirmed by experimental results.  相似文献   

2.
R. Martin  I. Tkalcec  R. Schaller 《哲学杂志》2013,93(22):2907-2920
Tempering effects have been studied in three martensitic carbon steels by mechanical spectroscopy. The mechanical-loss spectra present a relaxation peak similar to the Snoek-Köster peak in ferrite. The peak amplitude decreases upon tempering, indicating a decrease of the dislocation density. Transition carbides start to precipitate at 380 K in all the three grades. This tends to decrease the mechanical loss and to increase the modulus. Retained austenite decomposes around 520 K in two of the grades. In the third grade, the presence of Si delays this decomposition to 670 K. The decomposition of retained austenite leads to a sudden decrease of amplitude of the relaxation peak and a modulus anomaly. Both these effects can be attributed to a decrease of the dislocation density in martensite, probably associated with the depletion of carbon atoms in the dislocation core. At low frequency, a mechanical-loss peak associated with the decomposition of retained austenite is visible.  相似文献   

3.
李艳  蔡杰  吕鹏  邹阳  万明珍  彭冬晋  顾倩倩  关庆丰 《物理学报》2012,61(5):56105-056105
利用强流脉冲电子束(HCPEB)装置对金属纯钛进行轰击,采用X射线衍射,扫描电子显微镜及透射电子显微镜技术详细分析了轰击样品表层的结构和缺陷. X射线衍射分析表明, HCPEB能够在材料表层诱发幅值为 GPa量级的压应力,并在(100), (102)和(103)晶面出现择优取向.表层微观结构的观察表明: HCPEB轰击后材料表层发生了马氏体相变,形成了大量的片状马氏体组织; 此外, HCPEB轰击还在辐照表面诱发了强烈的塑性变形,一次轰击后,晶粒内部的塑性变形以(100)晶面的位错滑移为主,位错密度显著提高;多次轰击后,样品变形结构发生变化,变形孪晶的数量明显增多. 这些变形微结构不仅影响表层的织构演化行为,而且还能细化晶粒,进而提高材料表面硬度, 为HCPEB技术进行纯钛表面强化提供了一条有效的途径.  相似文献   

4.
《Current Applied Physics》2018,18(6):744-751
Material deformation caused by the interaction between defects is a significant factor of material fracture failure. The present study employs molecular dynamics simulations of single-void and double-void crystalline Ni atomic systems to investigate inter-void interactions. Furthermore, simulations showing the evolution of dislocations for three different crystallographic orientations are conducted to study the void growth and coalescence. The simulations also consider the effect of the radius of the secondary void on dislocation evolution. The results show that double-void systems are more prone to yield than single-void systems. Further microstructural analysis indicates that the interaction between voids is realized by dislocation reactions. The simulation results of the dislocation evolution of the three orientations reveal that a relationship exists between the evolution of the dislocation density and the stress-strain curve. At the initial stage of dislocation, the dislocation grows slowly, and consists of Shockley partial dislocation. The dislocation growth rate then increases significantly in the sharply declining stage of the stress-strain curve, where most of dislocations are Shockley partial dislocation. Analysis of the dislocation length during the overall simulation indicates that the dislocation length of the [110] orientation is the longest, followed by that of the [111] orientation and the [100] orientation, which has the shortest dislocation length.  相似文献   

5.

Recent experiments by Kiritani et al. [1] have revealed a surprisingly high rate of vacancy production during high-speed deformation of thin foils of fcc metals. Virtually no dislocations are seen after the deformation. This is interpreted as evidence for a dislocation-free deformation mechanism at very high strain rates. We have used molecular-dynamics simulations to investigate high-speed deformation of copper crystals. Even though no pre-existing dislocation sources are present in the initial system, dislocations are quickly nucleated and a very high dislocation density is reached during the deformation. Due to the high density of dislocations, many inelastic interactions occur between dislocations, resulting in the generation of vacancies. After the deformation, a very high density of vacancies is observed, in agreement with the experimental observations. The processes responsible for the generation of vacancies are investigated. The main process is found to be incomplete annihilation of segments of edge dislocations on adjacent slip planes. The dislocations are also seen to be participating in complicated dislocation reactions, where sessile dislocation segments are constantly formed and destroyed.  相似文献   

6.
Arpan Das 《哲学杂志》2015,95(8):844-860
Metastable austenitic stainless steels are prone to form deformation-induced martensite under the influence of externally applied stress. Crystallographic variant selection during martensitic transformation of metastable austenite has been investigated thoroughly with respect to the interaction between the applied uniaxial cyclic stress and the resulting accumulated plastic strain during cyclic plastic deformation. The orientation of all the Kurdjomov–Sachs (K-S) variants has been evaluated extensively and compared with the measured orientation of martensite with their corresponding interaction energies by applying the elegant transformation texture model recently developed by Kundu and Bhadeshia. Encouraging correlation between model prediction and experimental data generation for martensite pole figures at many deformed austenite grains has been observed. It has been found that both the applied uniaxial cyclic stress and the accumulated plastic strain are having strong influence on crystallographic variant selection during cyclic plastic deformation. Patel and Cohen’s classical theory can be utilized to predict the crystallographic variant selection, if it is correctly used along with the phenomenological theory of martensite crystallography.  相似文献   

7.
The microstructure/texture evolution and strengthening of 316?L-type and 304?L-type austenitic stainless steels during cold rolling were studied. The cold rolling was accompanied by the deformation twinning and micro-shear banding followed by the strain-induced martensitic transformation, leading to nanocrystalline microstructures consisting of flattened austenite and martensite grains. The fraction of ultrafine grains can be expressed by a modified Johnson-Mehl-Avrami-Kolmogorov equation, while inverse exponential function holds as a first approximation between the mean grain size (austenite or martensite) and the total strain. The deformation austenite was characterised by the texture components of Brass, {011}<211>, Goss, {011}<100>, and S, {123}<634>, whereas the deformation martensite exhibited a strong {223}<110> texture component along with remarkable γ-fibre, <111>∥ND, with a maximum at {111}<211>. The grain refinement during cold rolling led to substantial strengthening, which could be expressed by a summation of the austenite and martensite strengthening contributions.  相似文献   

8.

Several thermomechanical treatments have been used in order to create specific microstructures of dislocations in melt textured grown (MTG) YBa 2 Cu 3 O 7 m i /Y 2 BaCuO 5 ceramic superconductors. To by-pass the extreme brittleness of those materials, suitable techniques have to be used in order to increase substantially the dislocation density, in the orthorhombic phase, without promoting crack nucleation. The main features of microstructures obtained using e cold isostatic pressing f , high oxygen pressure anneals and plastic deformation under confining pressure are presented. The effects of applied stresses and phase instability on dislocation configurations are discussed together with the dislocation interactions with mirror twin boundaries. Consequences of those microstructures on the physical properties are also addressed with reference to the signature of each type of the defects.  相似文献   

9.
Arpan Das 《哲学杂志》2015,95(20):2210-2227
The phenomenological theory of martensitic transformation is well understood that the displacive phase transformations are mainly influenced by the externally applied stress. Martensitic transformation occurs with 24 possible Kurdjomov-Sachs (K-S) variants, where each variant shows a distinct lattice orientation. The elegant transformation texture model of Kundu and Bhadeshia for crystallographic variant selection of martensite in metastable austenite at various stress/strain levels has been assessed in this present research. The corresponding interaction energies have also been evaluated. Encouraging correlation between model prediction and experimental data generation for martensite pole figures at many deformed austenite grains has been observed at different stress/strain levels. It has been investigated that the mechanical driving force alone is able to explain the observed martensite microtextures at all stress/strain levels under uniaxial tensile deformation of metastable austenite under low temperature at a slow strain rate. The present investigation also proves that the Patel and Cohen’s classical theory can be utilized to predict the crystallographic variant selection, if it is correctly used along with the phenomenological theory of martensite crystallography.  相似文献   

10.
Using dislocation kinetic equations, maps of deformation-induced structures observed in neutron-irradiated metals and alloys are theoretically grounded. The critical strains and radiation doses for the transition from cellular and chaotic dislocation structures to heterogeneous channel-like deformation structures are found, and the relations of the critical strains and radiation doses to the kinetic coefficients that determine the evolution of the density of dislocations and radiation defects in irradiated materials are established. These relations are used to quantitatively analyze the effect of irradiation on the strength and deformation properties of Ni and martensitic steel A533B available in the literature. The critical conditions for the appearance of irradiation embrittlement in irradiated materials are considered.  相似文献   

11.
We present a Ni-based crystal-glassy composite material having superior strength paired with a considerable ductility of 15%. The formation of a metastable crystalline phase in a glassy matrix during solidification has been proven capable of promoting a strain-induced martensitic transformation leading to enhanced plasticity under compression at room temperature. Underlying mechanisms of plastic deformation are discussed in terms of the interplay between dislocation slip in the crystalline phase and shear deformation in the glassy matrix. We suppose that the strain-induced martensitic inclusions serve as strong barriers for shear band propagation, promoting shear band branching and multiple shear band formation, thus extending the ductility and preventing a premature brittle fracture. The acoustic emission technique has been employed to clarify the kinetics of transformation and stages of plastic deformation.  相似文献   

12.
钢铁材料中形变诱导相变超细化机理研究   总被引:3,自引:0,他引:3       下载免费PDF全文
张国英  张辉  刘春明  周永军 《物理学报》2005,54(4):1771-1776
通过计算机编程建立奥氏体相中12[1 1 0]刃位错、奥氏体相中非形变区和形变区奥氏体/铁 素体相界模型.用实空间的连分数方法计算了非形变区和形变区奥氏体/铁素体相界界面能, 计算了碳、氮及微合金元素在完整晶体及位错区引起的环境敏感镶嵌能,进而讨论形变过程 中铁素体形核的难易程度,碳、氮及合金元素在位错区的偏聚及析出与铁素体细化的关系. 计算结果表明:α-Fe易于在高密度位错区(形变带、亚晶界、晶界)形核,在奥氏体形变 过程中,就会大大提高α-Fe形核率,细化铁素体晶粒;碳、氮和微合金元素易于单独或共 同 关键词: 奥氏体/铁素体相界 刃位错 形变 晶粒细化  相似文献   

13.
ABSTRACT

The ability to experimentally synthesise ceramic materials to incorporate nanotwinned microstructures can drastically affect the underlying deformation mechanisms and mechanics through the complex interaction between stress state, crystallographic orientation, and twin orientation. In this study, molecular dynamics simulations are used to examine the transition in deformation mechanisms and mechanical responses of nanotwinned zinc-blende SiC ceramics subjected to different stress states (uniaxial compressive, uniaxial tensile, and shear deformation) by employing various twin spacings and loading/crystallographic orientations in nanotwinned structures, as compared to their single crystal counterparts. The simulation results show that different combinations of stress states and crystal/twin orientation, and twin spacing trigger different deformation mechanisms: (i) shear localised deformation and shear-induced fracture, preceded by point defect formation and dislocation slip, in the vicinity of the twin lamellae, shear band formation, and dislocation (emission) avalanche; (ii) cleavage and fracture without dislocation plasticity, weakening the nanotwinned ceramics compared to their twin-free counterpart; (iii) severe localised deformation, generating a unique zigzag microstructure between twins without any structural phase transformations or amorphisation, and (iv) atomic disordering localised in the vicinity of coherent twin boundaries, triggering dislocation nucleation and low shearability compared to twin-free systems.  相似文献   

14.
JLF-1钢高温循环变形后硬度与微观结构的数值关系   总被引:2,自引:0,他引:2       下载免费PDF全文
李怀林  杨文  杨启法 《物理学报》2009,58(13):338-S342
高温循环变形是结构材料性能降级的主要原因之一.用透射电子显微镜对低活化铁素体/马氏体钢——JLF-1钢低周疲劳样品的微观结构进行了分析,并测试了循环变形前后此钢显微维氏硬度的变化.为了掌握JLF-1钢性能在高温循环变形中的变化机理,依据位错理论,用最小二乘法对高温循环变形后的显微维氏硬度与微观结构进行了回归计算,得到了此钢显微维氏硬度与板条尺寸、位错胞尺寸、位错密度的数值关系. 关键词: 低活化铁素体/马氏体钢 循环变形 微观结构 显微维氏硬度  相似文献   

15.
The phase and structure transformation of tempered martensitic steel in the course of plastic deformation is considered in the present paper. A close correlation between the evolution of the substructure type and the behavior of carbon is established. The carbon concentrations in solid solution and on crystalline defects of the material as a whole and in different dislocation substructures are investigated versus the degree of plastic strain.  相似文献   

16.

Microstructural changes after several cycles of the thermomechanical treatment consisting of a small deformation by stress-induced martensitic transformation (fcc to hcp) and subsequent reversion to austenite by heating (referred to as 'training') have been studied by atomic force microscopy in Fe-Mn-Si based shape memory alloys. Well-trained samples contain a uniform distribution of thin martensite plates of the same variant, the widths of which decrease with increasing number of the training cycles, and their distribution becomes more uniform. Such microstructural development by training originates mainly from extremely thin plates (about 1 nm thick) of hcp phase that are still retained together with stacking faults in the austenite even after heating far above the reverse transformation temperature. In the reverse transformation on heating, a martensite plate that looks as though it is apparently one plate is, in fact, split into very thin plates, which indicates that the plate actually consists of extremely thin martensite plates and these thin plates are reverse-transformed one after another by reverse movement of the Shockley partial dislocations at their tips. This mode of reverse transformation ensures a perfect shape memory effect.  相似文献   

17.
A constitutive crystal plasticity model is proposed and developed for the inelastic deformation of irradiated bcc ferritic/martensitic steels. Defects found in these irradiated materials are used as substructure variables in the model. Insights from lower length- and time-scale simulations are used to frame the kinematic and substructure evolution relations of the governing deformation mechanisms. Models for evolution of mobile and immobile dislocations, as well as interstitial loops (formed due to irradiation), are developed. A rate theory-based approach is used to model the evolution of point defects generated during irradiation. The model is used to simulate the quasi-static tensile and creep response of a martensitic steel over a range of loading histories.  相似文献   

18.
19.
Multiscale dislocation dynamics plasticity (MDDP) was used to investigate shock-induced deformation in monocrystalline copper. In order to enhance the numerical simulations, a periodic boundary condition was implemented in the continuum finite element (FE) scale so that the uniaxial compression of shocks could be attained. Additionally, lattice rotation was accounted for by modifying the dislocation dynamics (DD) code to update the dislocations’ slip systems. The dislocation microstructures were examined in detail and a mechanism of microband formation is proposed for single- and multiple-slip deformation. The simulation results show that lattice rotation enhances microband formation in single slip by locally reorienting the slip plane. It is also illustrated that both confined and periodic boundary conditions can be used to achieve uniaxial compression; however, a periodic boundary condition yields a disturbed wave profile due to edge effects. Moreover, the boundary conditions and the loading rise time show no significant effects on shock–dislocations interaction and the resulting microstructures. MDDP results of high strain rate calculations are also compared with the predictions of the Armstrong–Zerilli model of dislocation generation and movement. This work confirms that the effect of resident dislocations on the strain rate can be neglected when a homogeneous nucleation mechanism is included.  相似文献   

20.
Arpan Das 《哲学杂志》2013,93(11):867-916
Abstract

Grain boundary engineering has revealed significant enhancement of material properties by modifying the populations and connectivity of different types of grain boundaries within the polycrystals. The character and connectivity of grain boundaries in polycrystalline microstructures control the corrosion and mechanical behaviour of materials. A comprehensive review of the previous researches has been carried out to understand this philosophy. Present research thoroughly explores the effect of total strain amplitude on phase transformation, fatigue fracture features, grain size, annealing twinning, different grain connectivity and grain boundary network after strain controlled low cycle fatigue deformation of austenitic stainless steel under ambient temperature. Electron backscatter diffraction technique has been used extensively to investigate the grain boundary characteristics and morphologies. The nominal variation of strain amplitude through cyclic plastic deformation is quantitatively demonstrated completely in connection with the grain boundary microstructure and fractographic features to reveal the mechanism of fatigue fracture of polycrystalline austenite. The extent of boundary modifications has been found to be a function of the number of applied loading cycles and strain amplitudes. It is also investigated that cyclic plasticity induced martensitic transformation strongly influences grain boundary characteristics and modifications of the material’s microstructure/microtexture as a function of strain amplitudes. The experimental results presented here suggest a path to grain boundary engineering during fatigue fracture of austenite polycrystals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号