首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
This paper concerns the regularity of a capillary graph (the meniscus profile of liquid in a cylindrical tube) over a corner domain of angle α. By giving an explicit construction of minimal surface solutions previously shown to exist (Indiana Univ. Math. J. 50 (2001), no. 1, 411–441) we clarify two outstanding questions. Solutions are constructed in the case α = π/2 for contact angle data (γ1, γ2) = (γ, π − γ) with 0 < γ < π. The solutions given with |γ − π/2| < π/4 are the first known solutions that are not C2 up to the corner. This shows that the best known regularity (C1, ∈) is the best possible in some cases. Specific dependence of the H?lder exponent on the contact angle for our examples is given. Solutions with γ = π/4 have continuous, but horizontal, normal vector at the corners in accordance with results of Tam (Pacific J. Math. 124 (1986), 469–482). It is shown that our examples are C0, β up to and including the corner for any β < 1. Solutions with |γ − π/2| > π/4 have a jump discontinuity at the corner. This kind of behavior was suggested by numerical work of Concus and Finn (Microgravity sci. technol. VII/2 (1994), 152–155) and Mittelmann and Zhu (Microgravity sci. technol. IX/1 (1996), 22–27). Our explicit construction, however, allows us to investigate the solutions quantitatively. For example, the trace of these solutions, excluding the jump discontinuity, is C2/3.  相似文献   

2.
We investigate the long time asymptotics in L1+(R) for solutions of general nonlinear diffusion equations ut = Δϕ(u). We describe, for the first time, the intermediate asymptotics for a very large class of non-homogeneous nonlinearities ϕ for which long time asymptotics cannot be characterized by self-similar solutions. Scaling the solutions by their own second moment (temperature in the kinetic theory language) we obtain a universal asymptotic profile characterized by fixed points of certain maps in probability measures spaces endowed with the Euclidean Wasserstein distance d2. In the particular case of ϕ(u) ~ um at first order when u ~ 0, we also obtain an optimal rate of convergence in L1 towards the asymptotic profile identified, in this case, as the Barenblatt self-similar solution corresponding to the exponent m. This second result holds for a larger class of nonlinearities compared to results in the existing literature and is achieved by a variation of the entropy dissipation method in which the nonlinear filtration equation is considered as a perturbation of the porous medium equation.  相似文献   

3.
We consider transport of a solute obeying linear kinetic sorption under unsteady flow conditions. The study relies on the vertical unsaturated flow model developed by Indelman et al. [J. Contam. Hydrol. 32 (1998), 77–97] to account for a cycle of infiltration and redistribution. One of the main features of this type of transport, as compared with the case of a continuous water infiltration, is the finite depth of solute penetration. In the infiltration stage an analytical solution that generalizes the previous results of Lassey [Water Resour. Res. 24 (1988), 343–350] and Severino and Indelman [J. Contam. Hydrol. 70 (2004), 89–115] is derived. This solution accounts for quite general initial solute distributions in both the mobile and immobile concentration. When the redistribution is also considered, two timescales become relevant, namely: (i) the desorption rate k−1, and (ii) the water application time tap. In particular, we have assumed that the quantity ε =(k tap)−1 can be regarded as a small parameter so that a perturbation analytical solution is obtained. At field-scale the concentration is calculated by means of the column model of Dagan and Bresler [Soil Sci. Soc. Am. J. 43 (1979), 461–467], i.e. as ensemble average over an infinite series of randomly distributed and uncorrelated soil columns. It is shown that the heterogeneity of hydraulic properties produces an additional spreading of the plume. An unusual phenomenon of plume contraction is observed at long times of solute propagation during the drying period. The mean solute penetration depth is studied with special emphasis on the impact of the variability of the saturated conductivity upon attaining the maximum solute penetration depth.  相似文献   

4.
This paper is devoted to the study of a LES model to simulate turbulent 3D periodic flow. We focus our attention on the vorticity equation derived from this LES model for small values of the numerical grid size δ. We obtain entropy inequalities for the sequence of corresponding vorticities and corresponding pressures independent of δ, provided the initial velocity u0 is in Lx2 while the initial vorticity ω0 = ∇ × u0 is in Lx1. When δ tends to zero, we show convergence, in a distributional sense, of the corresponding equations for the vorticities to the classical 3D equation for the vorticity.  相似文献   

5.
For elliptic equations ε2ΔuV(x) u + f(u) = 0, xR N , N ≧ 3, we develop a new variational approach to construct localized positive solutions which concentrate at an isolated component of positive local minimum points of V, as ε → 0, under conditions on f which we believe to be almost optimal. An erratum to this article can be found at  相似文献   

6.
We consider the stationary Navier–Stokes equations in a bounded domain Ω in R n with smooth connected boundary, where n = 2, 3 or 4. In case that n = 3 or 4, existence of very weak solutions in L n (Ω) is proved for the data belonging to some Sobolev spaces of negative order. Moreover we obtain complete L q -regularity results on very weak solutions in L n (Ω). If n = 2, then similar results are also proved for very weak solutions in with any q 0 > 2. We impose neither smallness conditions on the external force nor boundary data for our existence and regularity results.  相似文献   

7.
Under assumptions on smoothness of the initial velocity and the external body force, we prove that there exists T 0 > 0, ν 0 > 0 and a unique continuous family of strong solutions u ν (0 ≤ ν < ν 0) of the Euler or Navier–Stokes initial-boundary value problem on the time interval (0, T 0). In addition to the condition of the zero flux, the solutions of the Navier–Stokes equation satisfy certain natural boundary conditions imposed on curl u ν and curl 2 u ν .   相似文献   

8.
We prove the asymptotic stability of two-state nonplanar Riemann solutions for a class of multidimensional hyperbolic systems of conservation laws when the initial data are perturbed and viscosity is added. The class considered here is those systems whose flux functions in different directions share a common complete system of Riemann invariants, the level surfaces of which are hyperplanes. In particular, we obtain the uniqueness of the self-similar L entropy solution of the two-state nonplanar Riemann problem. The asymptotic stability to which the main result refers is in the sense of the convergence as t→∞ in Lloc1 of the space of directions ξ = x/t. That is, the solution u(t, x) of the perturbed problem satisfies u(t, tξ)→R(ξ) as t→∞, in Lloc1(ℝn), where R(ξ) is the self-similar entropy solution of the corresponding two-state nonplanar Riemann problem.  相似文献   

9.
Linear theory is applied to examine rotation and buoyancy effects on homogeneous turbulent shear flows with given vertical velocity shear, S=d/dx 3. In the rotating shear case (where the rotation vector is perpendicular to the plane of the mean flow, Ω i =Ωδ i 2), general solutions for the Fourier components of the fluctuating velocity are proposed. These solutions are compared with those proposed in the literature for the Fourier components of the fluctuating velocity and density in the case of a homogeneous stratified shear flow with vertical density gradient, S ρ=d/dx 3. It is shown that from the normal mode stability stand point the Bradshaw parameter B=2Ω/S(1+2Ω/S) (in the rotating shear case) and the Richardson number R i (in the statified shear case) play similar roles in identifying the stability for all the wave components except in the case where Ω·k=0, for which rotation has no effects on the flow. Analysis of the long-time behavior of the non-dimensional spectral density of energy, e g , is carried out. In the stable case, e g has decaying oscillations or undergoes a power law decay in time. Analytical solutions for the streamwise two-dimensional energy ℰ ii 1/2 (i.e. the limit at k 1=0 of the one-dimensional energy spectra) are proposed. At large time, ℰ ii 1(t)/ℰ ii 1(0) oscillates around the value (3R i +1)/(4R i ) except at R i =1 it stays constant in time. Similar behavior for ℰ ii 1(t)/ℰ ii 1(0) is also observed in the rotating shear case (ℰ ii 1(t)/ℰ ii 1(0) oscillates around the value (1+4B)/(4B)). Due to the behavior of the dimensionless spectral density of energy in both flow cases, the turbulent kinetic energy, /2, the production rate, ?, and the rate due to the buoyancy forces, ℬ, are split into two parts, , ?=?1+?2, ℬ=ℬ1+ℬ2 (in the stratified shear case, both ?1 and ℬ1 vanish when R i >?, while in the rotating shear case one has ℬ=0). It is shown that when rotation is “cyclonic” (i.e. Ω/S>0), part reaches maximum magnitudes at St ≈2, independent of the B value, and the first time to a zero crossing of ?2 occurs at this particular value. When rotation is “anticyclonic” (i.e. Ω/S<0) one finds St ≈1.6 instead of St ≈2. In the stratified shear case, both ?2 and ℬ2 cross zero at Nt=St ≈2, and part reaches maximum magnitudes at this particular value. These results and in particular those for the turbulent kinetic energy are compared with previous direct numerical simulation (DNS) results in homogeneous stratified shear flows. Received 30 July 2001 and accepted 19 February 2002  相似文献   

10.
We show that the inverse of a planar homeomorphism of bounded variation is also of bounded variation. In higher dimensions we show that f −1 is of bounded variation provided that f ϵ W 1,1(Ω; R n ) is a homeomorphism with |Df| in the Lorentz space L n-1,1(Ω). Dedicated to Tadeusz Iwaniec on his 60th birthday  相似文献   

11.
 The Navier-Stokes equation for compressible viscous fluid is considered on the half space in R 3 under the zero-Dirichlet boundary condition for the momentum with initial data near an arbitrarily given equilibrium of positive constant density and zero momentum. Time decay properties in L 2 norms for solutions of the linearized problem are investigated to obtain the rate of convergence in L 2 norms of solutions to the equilibrium when initial data are sufficiently close to the equilibrium in . Some lower bounds are derived for solutions to the linearized problem, one of which indicates a nonlinear phenomenon not appearing in the case of the Cauchy problem on the whole space. (Accepted May 8, 2002) Published online October 18, 2002 Communicated by T.-P. LIU  相似文献   

12.
We consider the asymptotic behaviour of positive solutions u(t, x) of the fast diffusion equation ${u_t=\Delta (u^{m}/m)= {\rm div}\,(u^{m-1} \nabla u)}We consider the asymptotic behaviour of positive solutions u(t, x) of the fast diffusion equation ut=D(um/m) = div (um-1 ?u){u_t=\Delta (u^{m}/m)= {\rm div}\,(u^{m-1} \nabla u)} posed for x ? \mathbb Rd{x\in\mathbb R^d}, t > 0, with a precise value for the exponent m = (d − 4)/(d − 2). The space dimension is d ≧ 3 so that m < 1, and even m = −1 for d = 3. This case had been left open in the general study (Blanchet et al. in Arch Rat Mech Anal 191:347–385, 2009) since it requires quite different functional analytic methods, due in particular to the absence of a spectral gap for the operator generating the linearized evolution. The linearization of this flow is interpreted here as the heat flow of the Laplace– Beltrami operator of a suitable Riemannian Manifold (\mathbb Rd,g){(\mathbb R^d,{\bf g})}, with a metric g which is conformal to the standard \mathbb Rd{\mathbb R^d} metric. Studying the pointwise heat kernel behaviour allows to prove suitable Gagliardo–Nirenberg inequalities associated with the generator. Such inequalities in turn allow one to study the nonlinear evolution as well, and to determine its asymptotics, which is identical to the one satisfied by the linearization. In terms of the rescaled representation, which is a nonlinear Fokker–Planck equation, the convergence rate turns out to be polynomial in time. This result is in contrast with the known exponential decay of such representation for all other values of m.  相似文献   

13.
IntroductionandProblemintheResearchofToroidThispaperdealswiththeexistenceof2π_periodicsolutionstothenonlinearsystemoffirst_orderdifferentialequationswithadeviatingargument x(t) =Bx(t) F(x(t-τ) ) p(t) ,( 1 )wherex(t)∈R2 , x(t) =ddtx(t) ,τ∈R ,B∈R2×2 ,F :R2 →R2 isboundedandp∈C(…  相似文献   

14.
Minimal composite theory (Proc. R. Soc. Lond., Ser. A, 453 2537–2549, 1979) shows that, at the lowest order in the reciprocal of the local flow Reynolds number R, the stability of a spatially developing similarity flow may be described by an ordinary differential equation in the similarity coordinate. It is, in principle, not possible to determine the dependence of the disturbance amplitude on the streamwise coordinate solely from such an ordinary differential equation. However, noting that, to O(R−2/3), the dependence of the eigenfunction on the normal coordinate is identical in both the full non-parallel and minimal composite theories, and using a method due to Gaster, we show how the streamwise variation of disturbance amplitude can be determined to O(R−1 without solving a partial differential equation, although knowledge of the partial differential operator is required. Comparison with the DNS results of Fasel and Konzelmann shows excellent agreement with the present results. Furthermore, especially in strong adverse pressure gradients, the present amplitude ratio estimates are within 3% of the full non-parallel theory, whereas the Orr–Sommerfeld results show an underestimate by 26%.This revised version was published online in May 2005. In the previous version, the published online date was missing. Moreover, the preliminary article pagination was deleted.  相似文献   

15.
We prove the existence of a weak solution to the steady Navier–Stokes problem in a three dimensional domain Ω, whose boundary ∂Ω consists of M unbounded components Γ1, . . . , Γ M and NM bounded components Γ M+1, . . . , Γ N . We use the inhomogeneous Dirichlet boundary condition on ∂Ω. The prescribed velocity profile α on ∂Ω is assumed to have an L 3-extension to Ω with the gradient in L 2(Ω)3×3. We assume that the fluxes of α through the bounded components Γ M+1, . . . , Γ N of ∂Ω are “sufficiently small”, but we impose no restriction on the size of fluxes through the unbounded components Γ1, . . . , Γ M .  相似文献   

16.
Suppose A,B and C are the bounded linear operators on a Hilbert space H, when A has a generalized inverse A- such that (AA-)*=AA- and B has a generalized inverse B- such that (B-B)*=B-B,the general characteristic forms for the critical points of the map Fp:X‖AXB-C‖pp(1p=2. Similarly, the same question has been discussed for several operators.  相似文献   

17.
Let ${A=\{{\bf x} \in \mathbb{R}^n : a < |{\bf x}| < b\}, n \geqq 2, a > 0}Consider a homogeneous, isotropic, hyperelastic body occupying the region A = {x ? \mathbbRn :  a <  |x |  < b }{A = \{{\bf x}\in\mathbb{R}^{n}\, : \,a <\,|{\bf x} |\,< b \}} in its reference state and subject to radially symmetric displacement, or mixed displacement/traction, boundary conditions. In Part I (Sivaloganathan and Spector in Arch Ration Mech Anal, 2009, in press) the authors restricted their attention to incompressible materials. For a large-class of polyconvex constitutive relations that grow sufficiently rapidly at infinity it was shown that to each nonradial isochoric deformation of A there corresponds a radial isochoric deformation that has strictly less elastic energy than the given deformation. In this paper that analysis is further developed and extended to the compressible case. The key ingredient is a new radial-symmetrisation procedure that is appropriate for problems where the symmetrised mapping must be one-to-one in order to prevent interpenetration of matter. For the pure displacement boundary-value problem, the radial symmetrisation of an orientation-preserving diffeomorphism uA → A* between spherical shells A and A* is the deformation
urad(x)=\fracr(R)Rx,     R=|x|,                        (0.1){\bf u}^{\rm rad}({\bf x})=\frac{r(R)}{R}{\bf x}, \quad R=|{\bf x}|,\qquad\qquad\qquad\qquad(0.1)  相似文献   

18.
The paper presents a general methodology of introducing the shell-type variables which is based on the rotation constraint-equation (RC-equation). The RC-equation is proven to be equivalent to the polar decomposition of the deformation gradient formula, and the rotations which it yields are interpreted in terms of rotations of vectors of an ortho-normal basis. The deformation function and rotations are assumed as polynomials of the thickness coordinate ζ, and in this form used in the RC-equation. Solving this equation, we can express the coefficients of the quadratic deformation function in terms of the following shell-type variables: (a) the mid-surface position x 0, (b) the constant rotation Q 0, (c) the rotation vector ψ * for the ζ-dependent rotations, and (d) the normal components U 33 0 and U 33 1 of the right stretching tensor. This new methodology (i) ensures that all shell kinematical variables are consistent with the RC-equation, which is justified on 3D grounds, (ii) provides a general framework from which various Reissner-type hypotheses can be obtained by suitable assumptions. As an example, two generalized Reissner hypotheses are derived: one with two normal stretches, and the other with the in-plane twist and the bubble-like warping parameters. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

19.
Natural Lagrangian systems (T,Π) on R 2 described by the equation are considered, where is a positive definite quadratic form in and Π(q) has a critical point at 0. It is constructively proved that there exist a C potential energy Π and two C kinetic energies T and such that the equilibrium q(t)≡ 0 is stable for the system (T,Π) and unstable for the system . Equivalently, it is established that for C natural systems the kinetic energy can influence the stability. In the analytic category this is not true. Accepted: October 20, 1999  相似文献   

20.
We consider an elasticity problem in a domain Ω()F(), where Ω is an open bounded domain in R3, F() is a connected nonperiodic set in Ω like a net of slender bars, and is a parameter characterizing the microstructure of the domain. We consider the case of a surface distribution of the set F(), i.e., for sufficiently small , the set F() is concentrated in arbitrary small neighbourhood of a surface Γ. Under a hypothesis on the asymptotic behaviour of the energy functional, we obtain the macroscopic (homogenized) model. To cite this article: M. Goncharenko, L. Pankratov, C. R. Mecanique 331 (2003).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号