首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have developed an analytical system to determine stable isotopic compositions (delta13C and delta18O) of sub-microgram quantities of CaCO3 for the purpose of analyzing individual foraminiferal shells, using continuous-flow isotope ratio mass spectrometry (CF-IRMS). The system consists of a micro-volume CaCO3 decomposition tube, stainless steel CO2 purification vacuum line with a quantity-regulating unit, helium-purged CO2 purification line, gas chromatograph, and a CF-IRMS system. By using this system, we can determine stable carbon and oxygen isotopic compositions as low as 0.2 microg of CaCO3, with standard deviations of +/-0.10 per thousand for delta13C and +/-0.18 per thousand for delta18O within a 4-h reaction time and 30-min analysis period.  相似文献   

2.
We determined grain-scale heterogeneities (from 6 to 88 microg) in the stable carbon and oxygen isotopic compositions (delta(13)C and delta(18)O) of the international standard calcite materials (NBS 19, NBS 18, IAEA-CO-1, and IAEA-CO-8) using a continuous-flow isotope ratio mass spectrometry (CF-IRMS) system that realizes a simultaneous determination of the delta(13)C and the delta(18)O values with standard deviations (S.D.) of less than 0.05 per thousand for CO(2) gas. Based on the S.D. of the delta(13)C and delta(18)O values determined for CO(2) gases evolved from the different grains of the same calcite material, we found that NBS 19, IAEA-CO-1, and IEAE-CO-8 were homogeneous for delta(13)C (less than 0.10 per thousand S.D.), and that only NBS 19 was homogeneous for delta(18)O (less than 0.14 per thousand S.D.). On the level of single grains, we found that both IAEA-CO-1 and IAEA-CO-8 were heterogeneous for delta(18)O (1.46 per thousand and 0.76 per thousand S.D., respectively), and that NBS 18 was heterogeneous for both delta(13)C and delta(18)O (0.34 per thousand and 0.54 per thousand S.D., respectively). Closer inspection of NBS 18 grains revealed that the highly deviated isotopic compositions were limited to the colored grains. By excluding such colored grains, we could also obtain the homogeneous delta(13)C and delta(18)O values (less than 0.18 per thousand and less than 0.16 per thousand S.D., respectively) for NBS 18. We conclude that NBS 19, IAEA-CO-1, or pure grains in NBS 18 are suitable to be used as the standard reference material for delta(13)C, and that either NBS 19 or pure grains in NBS 18 are suitable to be used as the reference material for delta(18)O during the grain-scale isotopic analyses of calcite.  相似文献   

3.
In this paper we present an automated system for simultaneous measurement of CO(2) concentration, delta(13)C and delta(18)O from small (<1 mL) air samples in a short period of time (approximately 1 hour). This system combines continuous-flow isotope ratio mass spectrometry (CF-IRMS) and gas chromatography (GC) with an inlet system similar to conventional dual-inlet methods permitting several measurement cycles of standard and sample air. Analogous to the dual-inlet method, the precision of this system increases with the number of replicate cycles measured. The standard error of the mean for a measurement with this system is 0.7 ppm for the CO(2) concentration and 0.05 per thousand for the delta(13)C and delta(18)O with four replicate cycles and 0.4 ppm and 0.03 per thousand respectively with nine replicate cycles. The mean offset of our measurements from NOAA/CMDL analyzed air samples was 0.08 ppm for the CO(2) concentration, 0.01 per thousand for delta(13)C and 0.00 per thousand for delta(18)O. A specific list of the parts and operation of the system is detailed as well as some of the applications for micrometeorological and ecophysiological applications.  相似文献   

4.
A simple modification to a commercially available gas chromatograph isotope ratio mass spectrometer (GC/IRMS) allows rapid and precise determination of the stable isotopes ((13)C and (18)O) of CO(2) at ambient CO(2) concentrations. A sample loop was inserted downstream of the GC injection port and used to introduce small volumes of air samples into the GC/IRMS. This procedure does not require a cryofocusing step and significantly reduces the analysis time. The precisions for delta(13)C and delta(18)O of CO(2) at ambient concentration were +/-0.164 and +/-0.247 per thousand, respectively. This modified GC/IRMS was used to test the effects of storage on the (18)O and (13)C isotopic ratios of CO(2) at ambient concentrations in four container types. On average, the change in the (13)C-CO(2) and (18)O-CO(2) ratios of samples after one week of storage in glass vials equipped with butyl rubber stoppers (Bellco Glass Inc.) were depleted by 0.12 and by 0.20 per thousand, respectively. The (13)C ratios in aluminum canisters (Scotty II and IV, Scott Specialty Gasses) after one month of storage were depleted, on average, by 0.73 and 2.04 per thousand, respectively, while the (18)O ratios were depleted by 0.38 and 1.20 per thousand for the Scotty II and IV, respectively. After a month of storage in electropolished containers (Summa canisters, Biospheric Research Corporation), the (13)C-CO(2) and (18)O-CO(2) ratios were depleted, on average, by 0.26 and enriched by 0.30 per thousand, respectively, close to the precision of measurements. Samples were collected at a mature hardwood forest for CO(2) concentration determination and isotopic analysis. A comparison of CO(2) concentrations determined with an infrared gas analyzer and from sample voltages, determined on the GC/IRMS concurrent with the isotopic analysis, indicated that CO(2) concentrations can be determined reliably with the GC/IRMS technique. The (13)C and (18)O ratios of nighttime ecosystem-respired CO(2), determined from the intercept of Keeling plots, were -26.11 per thousand (V-PDB) and -8.81 per thousand (V-PDB-CO(2)), respectively.  相似文献   

5.
We have developed an automated, continuous-flow isotope ratio mass spectrometry (CF-IRMS) system for the analysis of delta(13)C, delta(18)O, and CO(2) concentration (micromol mol(-1)) ([CO(2)]) from 2 mL of atmospheric air. Two replicate 1 mL aliquots of atmospheric air are sequentially sampled from fifteen 100 mL flasks. The atmospheric sample is inserted into a helium stream and sent through a gas chromatograph for separation of the gases and subsequent IRMS analysis. Two delta(13)C and delta(18)O standards and five [CO(2)] standards are run with each set of fifteen samples. We obtained a precision of 0.06 per thousand, 0.11 per thousand, and 0.48 micromol mol(-1) for delta(13)C, delta(18)O, and [CO(2)], respectively, by analyzing fifty 100 mL samples filled from five cylinders with a [CO(2)] range of 275 micromol mol(-1). Accuracy was determined by comparison with established methods (dual-inlet IRMS, and nondispersive infrared gas analysis) and found to have a mean offset of 0.00 per thousand, -0.09 per thousand, and -0.26 micromol mol(-1) for delta(13)C and delta(18)O, and [CO(2)], respectively.  相似文献   

6.
Accurate and efficient measurement of the oxygen isotope composition of carbonates (delta(C) (18)O) based on the mass spectrometric analysis of CO(2) produced by reacting carbonate samples with H(3)PO(4) is compromised by: (1) uncertainties associated with fractionation factors (alpha(CO)(2)C) used to correct measured oxygen isotope values of CO(2)(delta(CO(2)(18)O) to delta(C) (18)O; and (2) the slow reaction rates of many carbonates of geological and environmental interest with H(3)PO(4). In contrast, determination of delta(C) (18)O from analysis of CO produced by high-temperature (>1400 degrees C) pyrolytic reduction, using an elemental analyser coupled to continuous-flow isotope-ratio mass spectrometry (TC/EA CF-IRMS), offers a potentially efficient alternative that measures the isotopic composition of total carbonate oxygen and should, therefore, theoretically be free of fractionation effects. The utility of the TC/EA CF-IRMS technique was tested by analysis of carbonates in the calcite-dolomite-magnesite solid-solution and comparing the results with delta(C) (18)O measured by conventional thermal decomposition/fluorination (TDF) on the same materials. Initial results show that CO yields are dependent on both the chemical composition of the carbonate and the specific pyrolysis conditions. Low gas yields (<100% of predicted yield) are associated with positive (>+0.2 per thousand) deviations in delta(C(TC/EA) (18)O compared with delta(C(TDF) (18)O. At a pyrolysis temperature of 1420 degrees C the difference between delta(C) (18)O measured by TC/EA CF-IRMS and TDF (Delta(C(TC/EA,TDF) (18)O) was found to be negatively correlated with gas yield (r = -0.785) and this suggests that delta(C) (18)O values (with an estimated combined standard uncertainty of +/-0.38 per thousand) could be derived by applying a yield-dependent correction. Increasing the pyrolysis temperature to 1500 degrees C also resulted in a statistically significant correlation with gas yield (r = -0.601), indicating that delta(C) (18)O values (with an estimated uncertainty of +/-0.43 per thousand) could again be corrected using a yield-dependent procedure. Despite significant uncertainty associated with TC/EA CF-IRMS analysis, the magnitude of the uncertainty is similar to that associated with the application of poorly defined values of alpha(CO)(2), (C) used to derive delta(C) (18)O from delta(CO(2) (18)O measured by the H(3)PO(4) method for most common carbonate phases. Consequently, TC/EA CF-IRMS could provide a rapid alternative for the analysis of these phases without any effective deterioration in relative accuracy, while analytical precision could be improved by increasing the number of replicate analyses for both calibration standards and samples. Although automated gas preparation techniques based on the H(3)PO(4) method (ISOCARB, Kiel device, Gas-Bench systems) have the potential to measure delta(CO)(2) (18)O efficiently for specific, slowly reacting phases (e.g. dolomite), problems associated with poorly defined alpha(CO)(2), (C) remain. The application of the Principle of Identical Treatment is not a solution to the analysis of these phases because it assumes that a single fractionation factor may be defined for each phase within a solid-solution regardless of its precise chemical composition. This assumption has yet to be tested adequately.  相似文献   

7.
In this paper we present an overview of the present knowledge relating to methods that avoid interference of N2O on delta13C and delta18O measurements of CO2. The main focus of research to date has been on atmospheric samples. However, N2O is predominantly generated by soil processes. Isotope analyses related to soil trace gas emissions are often performed with continuous flow isotope ratio mass spectrometers, which do not necessarily have the high precision needed for atmospheric research. However, it was shown by using laboratory and field samples that a correction to obtain reliable delta13C and delta18O values is also required for a commercial continuous flow isotope ratio mass spectrometer. The capillary gas chromatography column of the original equipment was changed to a packed Porapak Q column. This adaptation resulted in an improved accuracy and precision of delta13C (standard deviation(Ghent): from 0.2 to 0.08 per thousand; standard deviation(Lincoln): from 0.2 to 0.13 per thousand) of CO2 for N2O/CO2 ratios up to 0.1. For delta18O there was an improvement for the standard deviation measured at Ghent University (0.13 to 0.08 per thousand) but not for the measurements at Lincoln University (0.08 to 0.23 per thousand). The benefits of using the packed Porapak Q column compared with the theoretical correction method meant that samples were not limited to small N(2)O concentrations, they did not require an extra N2O concentration measurement, and measurements were independent of the variable isotopic composition of N2O from soil.  相似文献   

8.
A continuous-flow isotope-ratio mass spectrometer (CF-IRMS, custom-made GasBenchII and Delta(plus)Advantage, ThermoFinnigan) was installed on a grassland site and interfaced with a closed-path infrared gas analyser (IRGA). The CF-IRMS and IRGA were housed in an air-conditioned travel van. Air was sampled at 1.5 m above the 0.07-m tall grassland canopy, drawn through a 17-m long PTFE tube at a rate of 0.25 L s(-1), and fed to the IRGA and CF-IRMS in series. The IRMS was interfaced with the IRGA via a stainless steel capillary inserted 0.5 m into the sample air outlet tube of the IRGA (forming an open split), a gas-tight pump, and a sample loop attached to the eight-port Valco valve of the continuous-flow interface. Air was pumped through the 0.25-mL sample loop at 10 mL s(-1) (a flushing frequency of 40 Hz). Air samples were analysed at intervals of approx. 2.8 min. Whole system precision was tested in the field using air mixed from pure CO2 and CO2-free air by means of mass flow controllers. The standard deviation of repeated single measurements was 0.21-0.07 per thousand for delta13C and 0.34-0.14 per thousand for delta18O of CO2 in air with mixing ratios ranging between 200-800 micromol mol(-1). The CO2 peak area measured by the IRMS was proportional to the CO2 mixing ratio (r2 = 1.00), allowing estimation of sample air CO2 mixing ratio from IRMS data. A 1-day long measurement cycle of CO2, delta13C and delta18O of air sampled above the grassland canopy was used to test the system for Keeling plot applications. Delta18O exhibited a clear diurnal cycle (4 per thousand range), but short-term (1-h interval) variability was small (average SD 0.38 per thousand). Yet, the correlation between delta18O and CO2 mixing ratio was relatively weak, and this was true for both the whole data set and 1-h subsets. Conversely, the delta13C of all 541 samples measured during the 25.2-h interval fitted well the Keeling regression (r2 = 0.99), yielding an intercept of -27.40 per thousand (+/-0.07 per thousand SE). Useful Keeling regressions (r2 > 0.9, average r2 = 0.96) also resulted from data collected over 1-h intervals of the 12-h long twilight and dark period. These indicated that 13C content of ecosystem respiration was approx. constant near -27.6 per thousand. The precision of the present system is similar to that of current techniques used in ecosystem studies which employ flask sampling and a laboratory-based CF-IRMS. Sampling (and measurement) frequency is greatly increased relative to systems based on flask sampling, and sampling time (0.025 s per sample) is decreased. These features increase the probability for sampling the entire CO2 range which occurs in a given time window. The system obviates sample storage problems, greatly minimises handling needs, and allows extended campaigns of high frequency sampling and analysis with minimal attendance.  相似文献   

9.
A computer-controllable mobile system is presented which enables the automatic collection of 33 air samples in the field and the subsequent analysis for delta13C and delta18O stable isotope ratios of a carbon-containing trace gas in the laboratory, e.g. CO2, CO or CH4. The system includes a manifold gas source input for profile sampling and an infrared gas analyzer for in situ CO2 concentration measurements. Measurements of delta13C and delta18O of all 33 samples can run unattended and take less than six hours for CO2. Laboratory tests with three gases (compressed air with different pCO2 and stable isotope compositions) showed a measurement precision of 0.03 per thousand for delta13C and 0.02 per thousand for delta18O of CO2 (standard error (SE), n = 11). A field test of our system, in which 66 air samples were collected within a 24-hour period above grassland, showed a correlation of 0.99 (r2) between the inverse of pCO2 and delta13C of CO2. Storage of samples until analysis is possible for about 1 week; this can be an important factor for sampling in remote areas. A wider range of applications in the field is open with our system, since sampling and analysis of CO and CH4 for stable isotope composition is also possible. Samples of compressed air had a measurement precision (SE, n = 33) of 0.03 per thousand for delta13C and of 0.04 per thousand for delta18O on CO and of 0.07 per thousand for delta13C on CH4. Our system should therefore further facilitate research of trace gases in the context of the carbon cycle in the field, and opens many other possible applications with carbon- and possibly non-carbon-containing trace gases.  相似文献   

10.
A simple and rapid method to measure naturally occurring delta(13)C values of headspace CO(2) of sparkling drinks has been set up, using direct injections on a gas chromatograph coupled to an isotope ratio mass spectrometer, through a combustion interface (GC/C/IRMS). We tested the method on CO(2) gas from several origins. No significant isotopic fractionation was observed nor influences by secondary compounds eventually present in the gas phase. Standard deviation for these measurements was found to be <0.1 per thousand.  相似文献   

11.
A systematic analysis of efficiency, reproducibility and accuracy of cryogenic purification of CO(2) from air samples for isotopic analyses is presented. The technical characteristics of the cryogenic line are given in detail. To study the cryogenic process, three different operating parameters are considered: flow rate of the gas entering the line, pressure of the gas in the line, and CO(2)-trap shape. Experimental results demonstrate that efficiency, reproducibility and accuracy strongly depend on the CO(2)trap shape. Moreover, a dependence of reproducibility and accuracy on the flow rate of the gas is found, but not on its pressure. High precision (< or =0.02 per thousand for delta(13)C and < or =0.05 per thousand for delta(18)O) and good accuracy (<0.09 per thousand for delta(13)C and <0.14 per thousand for delta(18)O) is achieved after applying the N(2)O correction.  相似文献   

12.
Recent insights into fractionation during dark respiration and rapid dynamics in isotope signatures of leaf- and ecosystem-respired CO(2) indicate the need for new methods for high time-resolved measurements of the isotopic signature of respired CO(2) (delta(13)C(res)). We present a rapid and simple method to analyse delta(13)C(res) using an in-tube incubation technique and an autosampler for small septum-capped vials. The effect of storage on the delta(18)O and delta(13)C ratios of ambient CO(2) concentrations was tested with different humidity and temperatures. delta(13)C ratios remained stable over 72 h, whereas delta(18)O ratios decreased after 24 h. Storage at 4 degrees C improved the storage time for delta(18)O. Leaves or leaf discs were incubated in the vials, flushed with CO(2)-free air and respired CO(2) was automatically sampled within 5 min on a microGas autosampler interfaced to a GV-Isoprime isotope ratio mass spectrometer. Results were validated by simultaneous on-line gas-exchange measurements of delta(13)C(res) of attached leaves. This method was used to evaluate the short-term (5-60 min) and diurnal dynamics of delta(13)C(res) in an evergreen oak (Quercus ilex) and a herb (Tolpis barbata). An immediate depletion of 2-4 per thousand from the initial delta(13)C(res) value occurred during the first 30 min of darkening. Q. ilex exhibited further a substantial diurnal enrichment in delta(13)C(res) of 8 per thousand, followed by a progressive depletion during the night. In contrast, T. barbata did not exhibit a distinct diurnal pattern. This is in accordance with recent theory on fractionation in metabolic pathways and may be related to the different utilisation of the respiratory substrate in the fast-growing herb and the evergreen oak. These data indicate substantial and rapid dynamics (within minutes to hours) in delta(13)C(res), which differed between species and probably the growth status of the plant. The in-tube incubation method enables both high time-resolved analysis and extensive sampling across different organs, species and functional types.  相似文献   

13.
Continuous-flow isotope ratio mass spectrometry interfaced with a Gasbench II is used for automated and faster analyses of delta(13)C and delta(18)O in water, carbonate, and air samples that are accurate and highly precise. Prior to online chemistry and measurement using the Gasbench technique, rubber septa-capped glass vials are routinely flushed to remove air. Due to the small amounts of sample gas required for isotope analyses using current techniques, care should be taken to properly flush these vials to avoid contamination of sample gas with air. Our results indicate that isotopic composition of sample CO(2) gas remains constant when 10 mL vials are flushed (rate of 100 mL/min) for > or =600 s, whereas for vials flushed <600 s, the isotopic composition becomes substantially lighter with decreasing time of flushing, which affects the accuracy of analyses. This largely depends on the isotopic composition (and volume) of air that still remains after flushing. This effect is more pronounced on delta(18)O than on delta(13)C of sample CO(2) gas because there is very little carbon in the air. After 24 h storage in vials with punctured septa, both delta(13)C and delta(18)O of CO(2) become isotopically heavier compared with first day analyses, suggesting time-dependent changes in isotopic composition. The magnitude of shift depends on the concentration and the isotopic composition of CO(2) in laboratory air as well as on fractionation due to outflow of sample gas or inflow of air via punctured septa. Contamination of sample gas with air can be observed as a secondary peak on chromatograms that precedes sample peaks, and the intensity of these peaks depends on the amount of air. Such peaks are always present with short flushing times. For accuracy and better precision, irrespective of the magnitude of the secondary peaks, the analyses should be discarded if these appear in the chromatograms.  相似文献   

14.
Small-scale developments have been made to an off-the-shelf continuous-flow gas chromatography/isotope-ratio mass spectrometry (CF-GC/IRMS) system to allow high-precision isotopic analysis of methane (CH(4)) and carbon dioxide (CO(2)) at ambient concentrations. The repeatability (1sigma) obtainable with this system is 0.05 per thousand for delta(13)C of CH(4), 0.03 per thousand for delta(13)C of CO(2), and 0.05 per thousand for delta(18)O of CO(2) for ten consecutive analyses of a standard tank. An automated inlet system, which allows diurnal studies of CO(2) and CH(4) isotopes, is also described. The improved precision for CH(4) analysis was achieved with the use of a palladium powder on quartz wool catalyst in the combustion furnace, which increased the efficiency of oxidation of CH(4) to CO(2). The automated inlet further improved the precision for both CH(4) and CO(2) analysis by keeping the routine constant. The method described provides a fast turn-around in samples, with accurate, reproducible results, and would allow a long-term continuous record of CH(4) or CO(2) isotopes at a site to be made, providing information about changing sources of the gases both seasonally and interannually.  相似文献   

15.
We describe a modified version of the equilibration method and a correction algorithm for isotope ratio measurements of small quantities of water samples. The deltaD and the delta(18)O of the same water sample can both be analyzed using an automated equilibrator with sample sizes as small as 50 microL. Conventional equilibration techniques generally require water samples of several microL. That limitation is attributable mainly to changes in the isotope ratio ((18)O/(16)O or D/H) of water samples during isotopic exchange between the equilibration gas (CO(2) or H(2)) and water, and therefore the technique for microL quantities of water requires mass-balance correction using the water/gas (CO(2) or H(2)) mole ratio to correct this isotopic effect. We quantitatively evaluate factors controlling the variability of the isotopic effect due to sample size. Theoretical consideration shows that a simple linear equation corrects for the effects without determining parameters such as isotope fractionation factors and water/gas mole ratios. Precisions (1-sigma) of 50-microL meteoric water samples whose isotopic compositions of -1.4 to -396.2 per thousand for deltaD are +/-0.5 to +/-0.6 per thousand, and of -0.37 to -51.37 per thousand for delta(18)O are +/-0.01 to +/-0.11 per thousand.  相似文献   

16.
Through simulation experiments of atmospheric sampling, a method via 2,4-dinitrophenylhydrazine (DNPH) derivatization was developed to measure the carbon isotopic composition of atmospheric acetone. Using acetone and a DNPH reagent of known carbon isotopic compositions, the simulation experiments were performed to show that no carbon isotope fractionation occurred during the processes: the differences between the predicted and measured data of acetone-DNPH derivatives were all less than 0.5 per thousand. The results permitted the calculation of the carbon isotopic compositions of atmospheric acetone using a mass balance equation. In this method, the atmospheric acetone was collected by a DNPH-coated silica cartridge, washed out as acetone-DNPH derivatives, and then analyzed by gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Using this method, the first available delta13C data of atmospheric acetone are presented.  相似文献   

17.
A novel method has been developed for compound-specific isotope analysis for acetone via DNPH (2,4-dinitrophenylhydrazine) derivatization together with combined gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS). Acetone reagents were used to assess delta13C fractionation during the DNPH derivatization process. Reduplicate delta13C analyses were designed to evaluate the reproducibility of the derivatization, with an average error (1 standard deviation) of 0.17 +/- 0.05 per thousand, and average analytical error of 0.28 +/- 0.09 per thousand. The derivatization process introduces no isotopic fractionation for acetone (the average difference between the predicted and analytical delta13C values was 0.09 +/- 0.20 per thousand, within the precision limits of the GC/C/IRMS measurements), which permits computation of the delta13C values for the original underivatized acetone through a mass balance equation. Together with further studies of the carbon isotopic effect during the atmospheric acetone-sampling procedure, it will be possible to use DNPH derivatization for carbon isotope analysis of atmospheric acetone.  相似文献   

18.
The stable isotope composition of nmol size gas samples can be determined accurately and precisely using continuous flow isotope ratio mass spectrometry (IRMS). We have developed a technique that exploits this capability in order to measure delta13C and delta18O values and, simultaneously, the concentration of CO2 in sub-mL volume soil air samples. A sampling strategy designed for monitoring CO2 profiles at particular locations of interest is also described. This combined field and laboratory technique provides several advantages over those previously reported: (1) the small sample size required allows soil air to be sampled at a high spatial resolution, (2) the field setup minimizes sampling times and does not require powered equipment, (3) the analytical method avoids the introduction of air (including O2) into the mass spectrometer thereby extending filament life, and (4) pCO2, delta13C and delta18O are determined simultaneously. The reproducibility of measurements of CO2 in synthetic tank air using this technique is: +/-0.08 per thousand (delta13C), +/-0.10 per thousand (delta18O), and +/-0.7% (pCO2) at 5550 ppm. The reproducibility for CO2 in soil air is estimated as: +/-0.06 per thousand (delta13C), +/-0.06 per thousand (delta18O), and +/-1.6% (pCO2). Monitoring soil CO2 using this technique is applicable to studies concerning soil respiration and ecosystem gas exchange, the effect of elevated atmospheric CO2 (e.g. free air carbon dioxide enrichment) on soil processes, soil water budgets including partitioning evaporation from transpiration, pedogenesis and weathering, diffuse solid-earth degassing, and the calibration of speleothem and pedogenic carbonate delta13C values as paleoenvironmental proxies.  相似文献   

19.
We developed a rapid, sensitive, and automated analytical system to determine the delta15N, delta18O, and Delta17O values of nitrous oxide (N2O) simultaneously in nanomolar quantities for a single batch of samples by continuous-flow isotope-ratio mass spectrometry (CF-IRMS) without any cumbersome and time-consuming pretreatments. The analytical system consisted of a vacuum line to extract and purify N2O, a gas chromatograph for further purification of N2O, an optional thermal furnace to decompose N2O to O2, and a CF-IRMS system. We also used pneumatic valves and pneumatic actuators in the system so that we could operate it automatically with timing software on a personal computer. The analytical precision was better than 0.12 per thousand for delta15N with >4 nmol N2O injections, 0.25 per thousand for delta18O with >4 nmol N2O injections, and 0.20 per thousand for Delta17O with >20 nmol N2O injections for a single measurement. We were also easily able to improve the precision (standard errors) to better than 0.05 per thousand for delta15N, 0.10 per thousand for delta18O, and 0.10 per thousand for Delta17O through multiple analyses with more than four repetitions with 190 nmol samples using the automated analytical system. Using the system, the delta15N, delta18O, and Delta17O values of N2O can be quantified not only for atmospheric samples, but also for other gas or liquid samples with low N2O content, such as soil gas or natural water. Here, we showed the first ever Delta17O measurements of soil N2O.  相似文献   

20.
A new procedure for the determination of carbon dioxide (CO(2)) (13)C/(12)C isotope ratios, using direct injection into a GasBench/isotope ratio mass spectrometry (GasBench/IRMS) system, has been developed to improve isotopic methods devoted to the study of the authenticity of sparkling drinks. Thirty-nine commercial sparkling drink samples from various origins were analyzed. Values of delta(13)C(cava) ranged from -20.30 per thousand to -23.63 per thousand, when C3 sugar addition was performed for a second alcoholic fermentation. Values of delta(13)C(water) ranged from -5.59 per thousand to -6.87 per thousand in the case of naturally carbonated water or water fortified with gas from the spring, and delta(13)C(water) ranged from -29.36 per thousand to -42.09 per thousand when industrial CO(2) was added. It has been demonstrated that the addition of C4 sugar to semi-sparkling wine (aguja) and industrial CO(2) addition to sparkling wine (cava) or water can be detected. The new procedure has advantages over existing methods in terms of analysis time and sample treatment. In addition, it is the first isotopic method developed that allows (13)C/(12)C determination directly from a liquid sample without previous CO(2) extraction. No significant isotopic fractionation was observed nor any influence by secondary compounds present in the liquid phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号