首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zheng XD  Jiang L  Feng XL  Lu TB 《Inorganic chemistry》2008,47(23):10858-10865
The reactions of racemic and enantiopure macrocyclic compounds [Ni(alpha-rac-L)](ClO(4))(2) (containing equal amounts of SS and RR enantiomers), [Ni(alpha-SS-L)](ClO(4))(2), and [Ni(alpha-RR-L)](ClO(4))(2) with K[Ag(CN)(2)] in acetonitrile/water afford three 1D helical chains of {[Ni(f-rac-L)][Ag(CN)(2)](2)}(n) (1), {[Ni(f-SS-L)](2)[Ag(CN)(2)](4)}(n) (Delta-2), and {[Ni(f-RR-L)](2)[Ag(CN)(2)](4)}(n) (Lambda-2); one dimer of [Ni(f-rac-L)][Ag(CN)(2)](2) (3); and one trimer of [Ni(f-rac-L)Ag(CN)(2)](3).(ClO(4))(3) (4) (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane). Compounds 1, Delta-2, Lambda-2, and 3, which are supramolecular isomers, are constructed via argentophilic interactions. In 1, [Ni(f-RR-L)][Ag(CN)(2)](2) enantiomers alternately connect with [Ni(f-SS-L)][Ag(CN)(2)](2) enantiomers through intermolecular argentophilic interactions to form a 1D meso-helical chain, and the 1D chains are further connected through the interchain hydrogen bonds to generate a 2D network. When chiral [Ni(alpha-SS-L)](ClO(4))(2) and [Ni(alpha-RR-L)](ClO(4))(2) were used as building blocks, two supramolecular stereoisomers of Delta-2 and Lambda-2 were obtained, which show the motif of homochiral right-handed and left-handed helical chains, respectively, and the 1D homochiral helical chains are linked by the interchain hydrogen bonds to form a 3D structure. In 3, a pair of enantiomers of [Ni(f-RR-L)][Ag(CN)(2)](2) and [Ni(f-SS-L)][Ag(CN)(2)](2) connect with each other through intermolecular argentophilic interactions to form a dimer. The reaction of [Ni(alpha-rac-L)](ClO(4))(2) with K[Ag(CN)(2)] in acetonitrile gives a trimer of 4; each trimer is chiral with unsymmetrical RR, RR, and SS, or RR, SS, and SS configurations. The homochiral nature of Delta-2 and Lambda-2 was confirmed by the results of solid circular dichroism spectra measurements. The solid samples of 1-4 show strong fluorescent emissions at room temperature.  相似文献   

2.
Li HY  Jiang L  Xiang H  Makal TA  Zhou HC  Lu TB 《Inorganic chemistry》2011,50(8):3177-3179
The reactions of a pair of enantiomers of macrocyclic nickel(II) complexes with racemic penicillamine generated two 3D hydrogen-bonded homochiral frameworks of {[Ni(f-(SS)-L)](2)(l-pends)(ClO(4))(2)}(n) (Λ-1) and {[Ni(f-(RR)-L)](2)(d-pends) (ClO(4))(2)}(n) (Δ-1). The frameworks possess 1D tubular pores and opposite right/left-handed helical porous surfaces (L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane; pends(2-) = penicillaminedisulfide anion).  相似文献   

3.
A series of functionalized adamantanes: 1,3-bis(1,2,4-triazol-4-yl)(tr(2)ad); 1,3,5-tris(1,2,4-triazol-4-yl)-(tr(3)ad); 1,3,5,7-tetrakis(1,2,4-triazol-4-yl)adamantanes (tr(4)ad) and 3,5,7-tris(1,2,4-triazol-4-yl)-1-azaadamantane (tr(3)ada) were developed as a new family of geometrically rigid polydentate tectons for supramolecular synthesis of framework solids. The coordination compounds were prepared under hydrothermal conditions; their structures reveal a special potential of the triazolyl adamantanes for the generation of highly-connected and open frameworks as well as structures based upon polynuclear metal clusters assembled with short-distance N(1),N(2)-triazole bridges. Complexes [Cd{L}(2)]A·nH(2)O [L = tr(3)ad, A = 2NO(3)(-) (4), CdCl(4)(2-) (5); L = tr(3)ada, A = CdI(4)(2-) (7)] are isomorphous and adopt a layered 3,6-connected structure of CdI(2) type. [{Cu(3)(OH)}(2)(SO(4))(5)(H(2)O)(2){tr(3)ad}(3)]·26H(2)O (6) is a layered polymer based upon Cu(3)(μ(3)-OH) nodes and trigonal tr(3)ad links. In [Cu(3)(OH)(2){tr(3)ada}(2)(H(2)O)(4)](ClO(4))(4) (8), [Cu(2){tr(3)ada}(2)(H(2)O)(3)](SO(4))(2)·7H(2)O (9) and [Cd(2){tr(3)ada}(3)]Cl(4)·28H(2)O (10) (UCl(3)-type net) the organic tripodal ligands bridge polynuclear metal clusters. Complexes [Ag{tr(4)ad}]NO(3)·3.5H(2)O (11) and [Cu{tr(4)ad}(H(2)O)](ClO(4))(2)·3H(2)O (12) have 3D SrAl(2)-type frameworks with the metal ions and adamantane tectons as topologically equivalent tetrahedral nodes, while in [Cd(3)Cl(6){tr(4)ad}(2)]·9H(2)O (13) the ligands bridge trinuclear six-connected Cd(3)Cl(6)(μ-tr)(4)(tr)(2) clusters. In the compounds [Cd(2){tr(2)ad}(4)(H(2)O)(4)](CdBr(4))(2)·2H(2)O (2) and [Cd{tr(2)ad}(4){CdI(3)}(2)]·4H(2)O (3) the bitopic ligands provide simple links between the metal ions, while in [Ag(2){tr(2)ad}(2)](NO(3))(2)·2H(2)O (1) the ligand is tetradentate and generates a 3D framework.  相似文献   

4.
Substitution reactions of platinum complexes bearing cyclohexylamine/diamine moieties viz., [Pt(H(2)O)(N,N-bis(2-pyridylmethyl)cyclohexylamine)](CF(3)SO(3))(2), bpcHna; [{Pt(H(2)O)}(2)(N,N,N',N'-tetrakis(2-pyridylmethyl)-trans-1,4-cyclohexyldiamine)](CF(3)SO(3))(4), cHn and [{Pt(H(2)O)}(2)(N,N,N',N'-tetrakis(2-pyridylmethyl)-4,4'-dicyclohexylmethanediamine)](CF(3)SO(3))(4), dcHnm and phenylamine/diamine moieties viz., ([Pt(H(2)O)N,N-bis(2-pyridylmethyl)phenylamine)](CF(3)SO(3))(2), bpPha; [{Pt(H(2)O)}(2)(N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-phenyldiamine)](CF(3)SO(3))(4), mPh; [{Pt(H(2)O)}(2)(N,N,N',N'-tetrakis(2-pyridylmethyl)-1,4-phenyldiamine)](CF(3)SO(3))(4), pPh and [{Pt(H(2)O)}(2)(N,N,N',N'-tetrakis(2-pyridylmethyl)-4,4'-diphenylmethanediamine)](CF(3)SO(3))(4)), dPhm with thiourea nucleophiles were studied in acidified 0.01 M LiCF(3)SO(3) aqueous medium under pseudo-first-order conditions using stopped-flow and UV-visible spectrophotometric techniques. The rate of substitution follows a similar trend in the two sets of complexes and decreases in the order: bpcHna > dcHnm > cHn and bpPha > dPhm ≈ pPh ≈ mPh), respectively. The result of this study has shown that the rigidity and/or the planarity of a diamine bridge linking the two (2-pyridylmethyl)amine-chelated Pt(II) centres, influences the reactivity of the metal centres by protracting similar symmetry elements within the complexes, which determines the amount of steric influences felt on the coordination square-plane. Hence, the order of reactivity is controlled by both the steric hindrance and the magnitude of the trans σ-inductive effect originating from the linker towards the metal centre. These two factors also impact on the acidity of the complexes. The high negative entropies and low positive enthalpies support an associative mode of activation.  相似文献   

5.
Wei M  He C  Sun Q  Meng Q  Duan C 《Inorganic chemistry》2007,46(15):5957-5966
Polyoxometalate-based metal-organic frameworks {[Gd(dpdo)(4)(H(2)O)(3)](PMo(12)O(40))(H(2)O)(2)CH(3)CN}(n) (2), {[Dy(dpdo)(4)(H(2)O)(3)](PMo(12)O(40))(H(2)O)(20CH(3)CN}(n) (3), {[Gd(dpdo)(4)(H(2)O)(3)](H(3)O)(SiMo(12)O(40))(dpdo)(0.5)(CH(3)CN)(0.5) (H(2)O)(3)}(n) (4), {[Ho(dpdo)(4)(H(2)O)(3)](H(3)O)(SiMo(12)O(40))(dpdo)(0.5)(CH(3)CN)(0.5)(H(2)O)(3)}(n) (5), {[Ni(dpdo)(2)(CH(3)CN) (H(2)O)(2)](2)(SiMo(12)O(40))(H(2)O)(2)}(n) (6), and {[Ni(dpdo)(3)](4)(PW(12)O(40))(3)[H(H(2)O)(27)(CH(3)CN)(12)]}(n) (7) (where dpdo is 4,4'-bipyridine-N,N'-dioxide) were constructed via self-assembly by embedding Keggin-type polyanions within the intercrystalline voids as guests or pillars. Compounds 2 and 3 are isomorphic and exhibit three-dimensional (3D) noninterwoven 64 frameworks with distorted-honeycomb cavities occupied by the polyanions. Compounds 4 and 5 are comprised of 3D noninterwoven frameworks formed by linking the adjacent folded sheets through hydrogen bonds and pi-pi stacking interactions relative to the free isolated dpdo ligand. Compound 6 is a pillar-layered framework with the [SiMo(12)O(40)](4-) anions located on the square voids of the two-dimensional bilayer sheets formed by the dpdo ligands and nickel(II) ions. Compound 7 is a 3D metal-organic framework formed by nickel(II) and 4,4'-bipyridine-N,N'-dioxide with the globular Keggin-structure [PW(12)O(4)](3-) anion as the template. A large protonated water cluster H(+)(H(2)O)(27) is trapped and stabilized within the well-modulated cavity.  相似文献   

6.
A 1D double-zigzag framework, {[Zn(paps)(2)(H(2)O)(2)](ClO(4))(2)}(n) (1; paps = N,N'-bis(pyridylcarbonyl)-4,4'-diaminodiphenyl thioether), was synthesized by the reaction of Zn(ClO(4))(2) with paps. However, a similar reaction, except that dry solvents were used, led to the formation of a novel 2D polyrotaxane framework, [Zn(paps)(2)(ClO(4))(2)](n) (2). This difference relies on the fact that water coordinates to the Zn(II) ion in 1, but ClO(4)(-) ion coordination is found in 2. Notably, the structures can be interconverted by heating and grinding in the presence of moisture, and such a structural transformation can also be proven experimentally by powder and single-crystal X-ray diffraction studies. The related N,N'-bis- (pyridylcarbonyl)-4,4'-diaminodiphenyl ether (papo) and N,N'-(methylenedi-para-phenylene)bispyridine-4-carboxamide (papc) ligands were reacted with Zn(II) ions as well. When a similar reaction was performed with dry solvents, except that papo was used instead of paps, the product mixture contained mononuclear [Zn(papo)(CH(3)OH)(4)](ClO(4))(2) (5) and the polyrotaxane [Zn(papo)(2)(ClO(4))(2)](n) (4). From the powder XRD data, grinding this mixture in the presence of moisture resulted in total conversion to the pure double-zigzag {[Zn(papo)(2)(H(2)O)(2)](ClO(4))(2)}(n) (3) immediately. Upon heating 3, the polyrotaxane framework of 4 was recovered. The double-zigzag {[Zn(papc)(2)(H(2)O)(2)](ClO(4))(2)}(n) (6) and polyrotaxane [Zn(papc)(2)(ClO(4))(2)](n) (7) were synthesized in a similar reaction. Although upon heating the double-zigzag 6 undergoes structural transformation to give the polyrotaxane 7, grinding solid 7 in the presence of moisture does not lead to the formation of 6. Significantly, the bright emissions for double-zigzag frameworks of 1 and 3 and weak ones for polyrotaxane frameworks of 2 and 4 also show interesting mechanochromic luminescence.  相似文献   

7.
To systematically explore the assembly mechanism of a rutile-type open framework of {[Zn(3)(pbdc)(2)]·2H(3)O}(n) (3) (H(4)pbdc = 5-phosphonobenzene-1,3-dicarboxylic acid) constructed by 3-connected pbdc ligands and 6-connected Zn(3)(CO(2))(4)(PO(3))(2) secondary building units (Zn(3)-SBUs), three major factors including solvothermal procedures, types of solvents and amines, are taken into consideration. Seven novel structures, namely {[Zn(5)(pbdc)(2)(OH)(2)(H(2)O)(4)]·4H(2)O}(n) (1), {[Zn(3)(pbdc)(2)·H(2)O]·(Htea)·H(3)O·2-5(H(2)O)}(n) (2), {[Zn(3)(pbdc)(2)](H(3)O)(2)(dma)}(n) (4), {[Zn(2)(pbdc)(taea)]·3H(2)O}(n) (5), {[Zn(3)(pbdc)(2)(Hpda)(2)]·2H(2)O}(n) (6), {[Zn(5)(pbdc)(2)(Hpbdc)(2)]·2H(2)pz·9H(2)O}(n) (7), {[Zn(3)(pbdc)(2)]·Hpd·H(3)O·4H(2)O}(n) (8) are obtained. The results indicate that the layered-solvothermal method and the isopropanol solvent play crucial roles in the construction of the special anionic open framework of [Zn(3)(pbdc)(2)](2-). Changing these two factors led molecular assembly away from the rutile-type open framework. However, amines play a variable role in the framework, which means that by using appropriate amines, molecular assembly could generate the open framework of [Zn(3)(pbdc)(2)](2-) with pores decorated by amines. These results suggest a different approach towards decorating pores in anionic frameworks with precise structural information.  相似文献   

8.
Conventional reactions of the versatile multidentate ligand 5-methyl-1,2,4-triazolo[1,5-a]pyrimidin-7(4H)-one (HmtpO) with metallic(II) salts lead to three novel multidimensional complexes [Cu(HmtpO)(2)(H(2)O)(3)](ClO(4))(2)·H(2)O (1), {[Cu(HmtpO)(2)(H(2)O)(2)](ClO(4))(2)·2HmtpO}(n) (2) and {[Co(HmtpO)(H(2)O)(3)](ClO(4))(2)·2H(2)O}(n) (3). In each compound, the triazolopyrimidine ligand shows a different and unusual coordination mode, giving rise to structures with diverse topologies and dimensionality. Compound 1 is a monomeric complex, in which HmtpO shows both N3-monodentate and N1,O71-bidentate modes. 2 is a bidimensional framework with the ligand showing a N3,O71 bidentate-bridging mode. The structure of 3 consists of 1D chains, in which HmtpO displays a N1,N3,O71-tridentate-bridging mode. It should be noted that these coordination modes of the HmtpO ligand are unique in the case of compounds 2 and 3. On the other hand, the magnetic properties of the polynuclear complexes 2 and 3 have been studied showing weak ferromagnetic and antiferromagnetic behaviour, respectively.  相似文献   

9.
Treatment of titanyl sulfate in about 60 mM sulfuric acid with NaL(OEt) (L(OEt) (-)=[(eta(5)-C(5)H(5))Co{P(O)(OEt)(2)}(3)](-)) afforded the mu-sulfato complex [(L(OEt)Ti)(2)(mu-O)(2)(mu-SO(4))] (2). In more concentrated sulfuric acid (>1 M), the same reaction yielded the di-mu-sulfato complex [(L(OEt)Ti)(2)(mu-O)(mu-SO(4))(2)] (3). Reaction of 2 with HOTf (OTf=triflate, CF(3)SO(3)) gave the tris(triflato) complex [L(OEt)Ti(OTf)(3)] (4), whereas treatment of 2 with Ag(OTf) in CH(2)Cl(2) afforded the sulfato-capped trinuclear complex [{(L(OEt))(3)Ti(3)(mu-O)(3)}(mu(3)-SO(4)){Ag(OTf)}][OTf] (5), in which the Ag(OTf) moiety binds to a mu-oxo group in the Ti(3)(mu-O)(3) core. Reaction of 2 in H(2)O with Ba(NO(3))(2) afforded the tetranuclear complex (L(OEt))(4)Ti(4)(mu-O)(6) (6). Treatment of 2 with [{Rh(cod)Cl}(2)] (cod=1,5-cyclooctadiene), [Re(CO)(5)Cl], and [Ru(tBu(2)bpy)(PPh(3))(2)Cl(2)] (tBu(2)bpy=4,4'-di-tert-butyl-2,2'-dipyridyl) in the presence of Ag(OTf) afforded the heterometallic complexes [(L(OEt))(2)Ti(2)(O)(2)(SO(4)){Rh(cod)}(2)][OTf](2) (7), [(L(OEt))(2)Ti(O)(2)(SO(4)){Re(CO)(3)}][OTf] (8), and [{(L(OEt))(2)Ti(2)(mu-O)}(mu(3)-SO(4))(mu-O)(2){Ru(PPh(3))(tBu(2)bpy)}][OTf](2) (9), respectively. Complex 9 is paramagnetic with a measured magnetic moment of about 2.4 mu(B). Treatment of zirconyl nitrate with NaL(OEt) in 3.5 M sulfuric acid afforded [(L(OEt))(2)Zr(NO(3))][L(OEt)Zr(SO(4))(NO(3))] (10). Reaction of ZrCl(4) in 1.8 M sulfuric acid with NaL(OEt) in the presence Na(2)SO(4) gave the mu-sulfato-bridged complex [L(OEt)Zr(SO(4))(H(2)O)](2)(mu-SO(4)) (11). Treatment of 11 with triflic acid afforded [(L(OEt))(2)Zr][OTf](2) (12), whereas reaction of 11 with Ag(OTf) afforded a mixture of 12 and trinuclear [{L(OEt)Zr(SO(4))(H(2)O)}(3)(mu(3)-SO(4))][OTf] (13). The Zr(IV) triflato complex [L(OEt)Zr(OTf)(3)] (14) was prepared by reaction of L(OEt)ZrF(3) with Me(3)SiOTf. Complexes 4 and 14 can catalyze the Diels-Alder reaction of 1,3-cyclohexadiene with acrolein in good selectivity. Complexes 2-5, 9-11, and 13 have been characterized by X-ray crystallography.  相似文献   

10.
Bu XH  Xie YB  Li JR  Zhang RH 《Inorganic chemistry》2003,42(23):7422-7430
In our efforts to systematically investigate the effects of the linker units of flexible ligands and other factors on the structures of Ag(I) complexes with thioethers, five new flexible pyridyl thioether ligands, bis(2-pyridylthio)methane (L(1)()), 1,3-bis(2-pyridylthio)propane (L(3)()), 1,4-bis(2-pyridylthio)butane (L(4)), 1,5-bis(2-pyridylthio)pentane (L(5)), and 1,6-bis(2-pyridylthio)hexane (L(6)), have been designed and synthesized, and the reactions of these ligands with Ag(I) salts under varied conditions (varying the solvents and counteranions) lead to the formation of eight novel metal-organic coordination architectures from di- and trinuclear species to two-dimensional networks: [Ag(3)(L(1)())(2)(ClO(4))(2)](ClO(4)) (1), [[AgL(3)](ClO(4))]( infinity ) (2), [[Ag(2)(L(4))(2)](ClO(4))(2)(CHCl(3))]( infinity ) (3), [[AgL(4)](ClO(4))(C(3)H(6)O)]( infinity ) (4), [[Ag(2)L(4)](NO(3))(2)]( infinity ) (5), [Ag(2)L(4)()(CF(3)SO(3))(2)]( infinity ) (6), [[AgL(5)](ClO(4))(CHCl(3))](2) (7), and [[AgL(6)()](ClO(4))]( infinity ) (8). All the structures were established by single-crystal X-ray diffraction analysis. The coordination modes of these ligands were found to vary from N,N-bidentate to N,N,S-tridentate to N,N,S,S-tetradentate modes, while the Ag(I) centers adopt two-, three-, or four-coordination geometries with different coordination environments. The structural differences of 1, 2, 3, 7, and 8 indicate that the subtle variations on the spacer units can greatly affect the coordination modes of the terminal pyridylsulfanyl groups and the coordination geometries of Ag(I) ions. The structural differences of 3 and 4 indicate that solvents also have great influence on the structures of Ag(I) complexes, and the differences between 3, 5, and 6 show counteranion effects in polymerization of Ag(I) complexes. The influences of counterions and solvents on the frameworks of these complexes are probably based upon the flexibility of ligands and the wide coordination geometries of Ag(I) ions. The results of this study indicate that the frameworks of the Ag(I) complexes with pyridyl dithioethers could be adjusted by ligand modifications and variations of the complex formation conditions.  相似文献   

11.
Four new potentially polytopic nitrogen donor ligands based on the 1,3,5-triazine fragment, L(1)-L(4) (L(1) = 2-chloro-4,6-di(1H-pyrazol-1-yl)-1,3,5-triazine, L(2) = N,N'-bis(4,6-di(1H-pyrazol-1-yl)-1,3,5-triazin-2-yl)ethane-1,2-diamine, L(3) = 2,4,6-tris(tri(1H-pyrazol-1-yl)methyl)-1,3,5-triazine, and L(4) = 2,4,6-tris(2,2,2-tri(1H-pyrazol-1-yl)ethoxy)-1,3,5-triazine) have been synthesized and characterized. The X-ray crystal structure of L(3) confirms that its molecular nature consists of a 1,3,5-triazine ring bearing three tripodal tris(pyrazolyl) arms. L(1), L(2), and L(4) react with Cu(I), Cu(II), Pd(II) and Ag(I) salts yielding mono-, di-, and oligonuclear derivatives: [Cu(L(1))(Cy(3)P)]ClO(4), [{Ag(2)(L(2))}(CF(3)SO(3))(2)]·H(2)O, [Cu(2)(L(2))(NO(3))(2)](NO(3))(2)·H(2)O, [Cu(2)(L(2))(CH(3)COO)(2)](CH(3)COO)(2)·3H(2)O, [Pd(2)(L(2))(Cl)(4)]·2H(2)O, [Ru(L(2))(Cl)(OH)]·CH(3)OH, [Ag(3)(L(4))(2)](CF(3)SO(3))(3) and [Ag(3)(L(4))(2)](BF(4))(3). The interaction of L(3) with Ag(I), Cu(II), Zn(II) and Ru(II) complexes unexpectedly produced the hydrolysis of the ligand with formation, in all cases, of tris(pyrazolyl)methane (TPM) derivatives. In detail, the already known [Ag(TPM)(2)](CF(3)SO(3)) and [Cu(TPM)(2)](NO(3))(2), as well as the new [Zn(TPM)(2)](CF(3)SO(3))(2) and [Ru(TMP)(p-cymene)]Cl(OH)·2H(2)O complexes have been isolated. Single-crystal XRD determinations on the latter derivatives confirm their formulation, evidencing, for the Ru(II) complex, an interesting supramolecular arrangement of the anions and crystallization water molecules.  相似文献   

12.
Silver(I) coordination complexes with the versatile and biomimetic ligands 1,2,4-triazolo[1,5-a]pyrimidine (tp), 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine (dmtp) and 7-amine-1,2,4-triazolo[1,5-a]pyrimidine (7atp) all feature dinuclear [Ag(2)(μ-tp)(2)](2+) building units (where tp is a triazolopyrimidine derivative), which are the preferred motif, independently of the counter-anion used. According to AIM (atoms in molecules) and ELF (electron localization function) analyses, this fact is due to the great stability of these dinuclear species. The complexes structures range from the dinuclear entities [Ag(2)(μ-tp)(2)(CH(3)CN)(4)](BF(4))(2) (1), [Ag(2)(μ-tp)(2)(CH(3)CN)(4)](ClO(4))(2) (2), [Ag(2)(μ-7atp)(2)](ClO(4))(2) (3) and [Ag(2)(μ-dmtp)(2)(CH(3)CN)](PF(6))(ClO(4)) (4) over the 1D polymer chain [Ag(2)(μ-CF(3)SO(3))(2)(μ-dmtp)(2)](n) (5) to the 3D net {[Ag(2)(μ(3)-tp)(2)](PF(6))(2)·~6H(2)O}(n) (6) with NbO topology.  相似文献   

13.
Metal complexation studies were performed with the ditopic pyrimidine-hydrazone (pym-hyz) strand 6-hydroxymethylpyridine-2-carboxaldehyde (2-methyl-pyrimidine-4,6-diyl)bis(1-methylhydrazone) (1) and Pb(ClO(4))(2)·3H(2)O, Pb(SO(3)CF(3))(2)·H(2)O, Zn(SO(3)CF(3))(2), and Zn(BF(4))(2) to examine the ability of 1 to form various supramolecular architectures. X-ray crystallographic and NMR studies showed that coordination of the Pb(II) salts with 1 on a 2:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2) resulted in the linear complexes [Pb(2)1(ClO(4))(4)] (2), [Pb(2)1(ClO(4))(3)(H(2)O)]ClO(4) (3), and [Pb(2)1(SO(3)CF(3))(3)(H(2)O)]SO(3)CF(3) (4). Two unusually distorted [2 × 2] grid complexes, [Pb1(ClO(4))](4)(ClO(4))(4) (5) and [Pb1(ClO(4))](4)(ClO(4))(4)·4CH(3)NO(2) (6), were formed by reacting Pb(ClO(4))(2)·6H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN and CH(3)NO(2). These grids formed despite coordination of the hydroxymethyl arms due to the large, flexible coordination sphere of the Pb(II) ions. A [2 × 2] grid complex was formed in solution by reacting Pb(SO(3)CF(3))(2)·H(2)O and 1 on a 1:1 metal/ligand ratio in CH(3)CN as shown by (1)H NMR, microanalysis, and ESMS. Reacting the Zn(II) salts with 1 on a 2:1 metal/ligand ratio gave the linear complexes [Zn(2)1(H(2)O)(4)](SO(3)CF(3))(4)·C(2)H(5)O (7) and [Zn(2)1(BF(4))(H(2)O)(2)(CH(3)CN)](BF(4))(3)·H(2)O (8). (1)H NMR studies showed the Zn(II) and Pb(II) ions in these linear complexes were labile undergoing metal ion exchange. All of the complexes exhibited pym-hyz linkages in their cisoid conformation and binding between the hydroxymethyl arms and the metal ions. No complexes were isolated from reacting either of the Zn(II) salts with 1 on a 1:1 metal/ligand ratio, due to the smaller size of the Zn(II) coordination sphere as compared to the much larger Pb(II) ions.  相似文献   

14.
Three angular ditopic ligands (1,3-bis(benzimidazol-1-ylmethyl)-4,6-dimethylbenzene L(1), 1,3-bis(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene L(2), and 1,4-bis(benzimidazol-1-ylmethyl)-2,3,5,6-tetramethylbenzene L(3)) and one tripodal ligand 1,3,5-tris(benzimidazol-1-ylmethyl)-2,4,6-trimethylbenzene L(4) have been prepared. Reaction of these shape-specific designed ligands with different metal salts affords a series of discrete molecular architectures: [Ag(2)L(1)(2)](BF(4))(2) 1, [Ag(2)L(2)(2)](CF(3)SO(3))(2) 2, [CF(3)SO(3)(-) subset Ag(2)L(3)(2)]CF(3)SO(3) 3, [CF(3)SO(3)(-) subset Ag(2)L(3)(3)]CF(3)SO(3) 4, [ClO(4)(-) subset Cu(2)L(2)(4)](ClO(4))(3) 5, [4H(2)O subset Ni(2)L(2)(4)Cl(4)].6H(2)O 6, [BF(4)(-) subset Ag(3)L(4)(2)](BF(4))(2) 7, [ClO(4)(-) subset Ag(3)L(4)(2)](ClO(4))(2) 8, and [CuI(3)(2-) subset Cu(3)L(4)(2)](2)[Cu(2)I(4)] 9. The compounds were characterized by elemental analysis, ESI-MS, IR, and NMR spectroscopy, and X-ray crystallography. 1 is a dinuclear metallacycle with 2-fold rotational symmetry in which two syn-conformational L(1) ligands are connected by two linearly coordinated Ag(+) ions. 2 and 3 are structurally related, consisting of rectangular structures assembled from two linearly coordinated Ag(+) ions and two L(2) or L(3) ligands. The structure of 4 is a trigonal prismatic box consisting of two Ag(+) ions in trigonal planar coordination linked by three L(3) ligands, while the structures of 5 and 6 are tetragonal prismatic cages constructed by two square planar Cu(2+) or Ni(2+) ions linked by four L(2) ligands. The topologies of 7-9 are similar to that of 4; however, these three structures are assembled from three linearly coordinated Ag(+) or Cu(+) ions and two tripodal ligands, representing an alternative strategy to assembling a trigonal prism. (1)H NMR and ESI-MS were utilized to elucidate the solution structures of these macrocycles.  相似文献   

15.
Reaction of ScX3 (X=NO3-, CF3SO3-, ClO4-) with 4,4'-bipyridine-N,N'-dioxide (L) affords topologically distinct six-connected three-dimensional coordination frameworks, {[Sc(L)3](NO3)3}(infinity) (1), {[Sc(L)3](CF3)SO3)3(CH3OH)2.7(H2O)3}(infinity) (2), {[Sc(L)3](ClO4)3}(infinity) (3) and {[Sc(L)4(H2O)2](ClO4)3}(infinity) (4). Compounds 1, 2 and 3 are networks based on octahedrally co-ordinated ScO6 centres bound through six oxygen atoms from six separate N-oxide ligands L. Compounds 1 and 3 are doubly interpenetrated and have alpha-polonium-type structures of 4(12)6(3) topology based upon three intersecting (4,4) nets. The structure of 2 is unusual and shows parallel, co-planar layers of (4,4) nets connected in a criss-crossed fashion to afford a new 4(8)6(6)8 topology. In 4 only four ligands L bind to each Sc(III) centre with two additional water molecules bridging metal nodes. Significantly, the bridges formed by L do not sit in a plane and if connections through L are considered alone the resultant structure is a diamondoid array typically based upon a tetrahedral connecting node at Sc. Five interpenetrating diamondoid networks are observed that are cross-bridged by water molecules to form a single three-dimensional array of 4(8)6(7) topology. Compound 4 can also be viewed as incorporating two intersecting (4,4) grids based upon two ligands L and two bridging waters. Thus, variation of anion, solvent and conditions critically affects the structures of products formed, and the series of polymers reported herein illustrates how tectons based upon (4,4) grids can be combined and distorted to form non-NaCl topologies and even cross-bridged, multiply interpenetrated diamondoid materials. Both compounds 2 and 4 represent unusual examples of self-penetrated coordination frameworks.  相似文献   

16.
The copper(II) complexes [Cu(4)(1,3-tpbd)(2)(H(2)O)(4)(NO(3))(4)](n)(NO(3))(4n)·13nH(2)O (1), [Cu(4)(1,3-tpbd)(2)(AsO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (2), [Cu(4)(1,3-tpbd)(2)(PO(4))(ClO(4))(3)(H(2)O)](ClO(4))(2)·2H(2)O·0.5CH(3)OH (3), [Cu(2)(1,3-tpbd){(PhO)(2)PO(2)}(2)](2)(ClO(4))(4) (4), and [Cu(2)(1,3-tpbd){(PhO)PO(3)}(2)(H(2)O)(0.69)(CH(3)CN)(0.31)](2)(BPh(4))(4)·Et(2)O·CH(3)CN (5) [1,3-tpbd = N,N,N',N'-tetrakis(2-pyridylmethyl)-1,3-benzenediamine, BPh(4)(-) = tetraphenylborate] were prepared and structurally characterized. Analyses of the magnetic data of 2, 3, 4, and [Cu(2)(2,6-tpcd)(H(2)O)Cl](ClO(4))(2) (6) [2,6-tpcd = 2,6-bis[bis(2-pyridylmethyl)amino]-p-cresolate] show the occurrence of weak antiferromagnetic interactions between the copper(II) ions, the bis-terdentate 1,3-tpbd/2,6-tpcd, μ(4)-XO(4) (X = As and P) μ(1,2)-OPO and μ-O(phenolate) appearing as poor mediators of exchange interactions in this series of compounds. Simple orbital symmetry considerations based on the structural knowledge account for the small magnitude of the magnetic couplings found in these copper(II) compounds.  相似文献   

17.
Three new compounds of formula {[Cu(gua)(H(2)O)(3)](BF(4))(SiF(6))(1/2)}(n) (1), {[Cu(gua)(H(2)O)(3)](CF(3)SO(3))(2).H(2)O}(n) (2) and [Cu(gua)(2)(H(2)O)(HCOO)]ClO(4).H(2)O.1/2HCOOH] (3) [gua = 2-amino-1H-purin-6(9H)-one] showing the unprecedented coordination of neutral guanine, have been synthesised and structurally characterized. The structures of the compounds 1 and 2 contain uniform copper(II) chains of formula [Cu(gua)(H(2)O)(3)](n)(2n+), where the copper atoms are bridged by guanine ligands coordinated via N(3) and N(7). The electroneutrality is achieved by uncoordinated tetrafluoroborate and hexafluorosilicate (1) and triflate (2). Each copper atom in 1 and 2 is five-coordinated in a distorted square pyramidal environment: two water molecules in trans positions and the N(3) and N(7a) nitrogen atoms of two guanine ligands build the basal plane whereas a water molecule fills the axial position. The values of the copper-copper separation across the bridging guanine ligand are 7.183(1) (1) and 7.123(1) A (2). is an ionic salt whose structure is made up of mononuclear [Cu(gua)(2)(H(2)O)(HCOO)](+) cations and perchlorate anions plus water and formic acid as crystallization molecules. The two guanine ligands in the cation are coordinated to the copper centre through the N(9) atom. The copper atom in 3 is four-coordinated with two monodentate guanine molecules in the trans position, a water molecule and a monodenate formate ligand building a quasi square planar surrounding. Magnetic susceptibility measurements for 1 and 2 in the temperature range 1.9-300 K show the occurrence of significant intrachain antiferromagnetic interactions between the copper(ii) ions across the guanine bridge [J = -9.6(1) (1) and -10.3(1) cm(-1) (2) with H = -J summation operator(i)S(i).S(i+1)].  相似文献   

18.
Two stepwise approaches to preparing large unsymmetrical macrocycles incorporating diethylenetriamine lateral units are described: the first utilises protecting group chemistry, whereas the second exploits irreversible amide bond formation in the presence of an excess of the amine. In the first approach condensation of two equivalents of N-acetyldiethylenetriamine 1 with 2,6-diformyl-4-methylphenol, followed by a sodium borohydride reduction of the newly formed imine bonds and acidic removal of the protecting groups, yields a phenol-containing "two-armed" precursor as an HCl salt 2. Using the second approach the new pyridine-containing "two-armed" precursor , is prepared from 2,6-dimethylpyridinedicarboxylate and an excess of diethylenetriamine. These two "two-armed" di-primary amine precursors, 2 (after reaction with KOH) and 3, can be condensed with the dicarbonyl head units of choice. The lead templated condensation of 2 with 2,6-diacetylpyridine results in the formation of the macrocyclic dilead(II) complex {[Pb(II)(2)(L1)(Cl)](ClO(4))(2)}(infinity) 4. Transmetallation of 4 with three equivalents of copper(II) perchlorate produces Cu(II)(3)(L1)(OH)(ClO(4))(4) 5. Condensation of 3 with 2,6-diacetylpyridine or 2,6-diformylpyridine in the presence of barium(ii) ions results in the macrocyclic complexes [Ba(II)(H(2)L2)](ClO(4))(2) 6 and [Ba(II)(H(2)L3)](ClO(4))(2) 7, respectively. Copper(II) acetate templates the formation of the crystallographically characterised unsymmetrical macrocyclic complex [Cu(II)(3)(L4)(OH)(NCS)(2)].EtOH, 8.EtOH, from 3, 2,6-diformyl-4-methylphenol and NaNCS.  相似文献   

19.
Copper-, manganese-, and zinc-based ionic liquids (Cu{NH(2)CH(2)CH(2)OH}(6)[CH(3)(CH(2))(3)CH(C(2)H(5))CO(2)](2) (2), Cu{NH(CH(2)CH(2)OH)(2)}(6)[CH(3)(CH(2))(3)CH(C(2)H(5))CO(2)](2) (3A), Cu{NH(CH(2)CH(2)OH)(2)}(6)[CF(3)SO(3)](2) (3B), Cu{NH(CH(2)CH(2)OH)(2)}(6)[(CF(3)SO(2))(2)N](2) (3C), Mn{NH(CH(2)CH(2)OH)(2)}(6)[CF(3)SO(3)](2) (4), and Zn{NH(2)CH(2)CH(2)OH}(6)[CF(3)SO(3)](2) (5)) are synthesized in a single-step reaction. Infrared data suggest that ethanolamine preferentially coordinates to the metal center through the amine group in 2 and the hydroxyl group in 5. In addition, diethanolamine coordinates through the amine group in 3A, 3C, and 4 and the hydroxyl group in 3B. The compounds are viscous (>1000 cP) at room temperature, but two (3C and 4) display specific conductivities that are reasonably high for ionic liquids (>20 mS cm(-1)). All of the compounds display a glass transition (T(g)) below -50 °C. The cyclic voltammograms (CVs) of 2, 3A, 3B, and 3C display a single quasi-reversible wave associated with Cu(II)/Cu(I) reduction and re-oxidation while 5 shows a wave attributed to Zn(II)/Zn(0) reduction and stripping (re-oxidation). Compound 4 is the first in this new family of transition metal-based ionic liquids (MetILs) to display reversible Mn(II)/Mn(III) oxidation and re-reduction at 50 mV s(-1) using a glassy carbon working electrode.  相似文献   

20.
Decomplexation of the trivalent lanthanide, Ln(III), from the racemic bimetallic triple-stranded helicates [LnCr(L8)(3)](6+) provides the inert chiral tripodal nonadentate receptor [Cr(L8)(3)](3+). Elution of the latter podand with Na(2)Sb(2)[(+)-C(4)O(6)H(2)](2).5H(2)O through a cation exchange column allows its separation into its inert helical enantiomers M-(+)(589)-[Cr(L8)(3)](3+) and P-(-)(589)-[Cr(L8)(3)](3+), whose absolute configurations are assigned by using CD spectroscopy and exciton theory. Recombination with Ln(III) restores the original triple-stranded helicates [LnCr(L8)(3)](6+), and the associated thermodynamic parameters unravel the contribution of electrostatic repulsion and preorganization to the complexation process. Combining M-(+)(589)-[Cr(L8)(3)](3+) with Eu(III) produces the enantiomerically pure d-f helicate MM-(-)(589)-[EuCr(L8)(3)](CF(3)SO(3))(6).4CH(3)CN, whose X-ray crystal structure (EuCrC(113)H(111)N(25)O(21)S(6)F(18), monoclinic, P2(1), Z = 2) unambiguously confirms the absolute left-handed configuration for the final helix. The associated ligand-centered and metal-centered chiro-optical properties recorded for the complexes MM-[LnCr(L8)(3)](6+) and PP-[LnCr(L8)(3)](6+) (Ln = Eu, Gd, Tb) show a strong effect of helicity on specific rotary dispersions, CD and CPL spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号