首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
As a result of an increasing number of bacteria developing resistance against antibiotics, antimicrobial peptides (AMPs) are attracting significant interest, particularly in relation to identification of peptides displaying potent but selective effects. Much less focus has been placed on delivery systems for AMPs, despite AMPs suffering from delivery challenges related to their size, cationicity, and amphiphilicity. Inorganic nanoparticles may provide opportunities for controlling peptide release, reducing infection-related AMP degradation, or increasing bioavailability. Numerous such nanomaterials display potent and triggerable antimicrobial effects on their own. When combined with AMPs, combinatorial and synergistic effects in relation to the behavior of such mixed systems as antimicrobials have been observed. The mechanistic origin of these effects are poorly understood that at present, however, precluding rational design of mixed nanoparticle antimicrobials/AMPs and nanoparticulate delivery systems for AMPs. Here, the area of membrane interactions and antimicrobial effects of inorganic nanomaterials are briefly outlined, in combination with AMPs.  相似文献   

2.
The emergence of drug resistant bacterium threatens the global public healthcare systems.The urgent need to obtain new antimicrobials has driven antimicrobial peptides(AMPs)research into spotlight.Here we give a brief introduction of the recent progress of AMPs regarding their structures,properties, production and modification,and antimicrobial mechanism.Thereby,this review will give an insight into the trends and challenges facing on this particular kind of antimicrobial materials.  相似文献   

3.
Antimicrobial peptides (AMPs) are ubiquitous in nature where they play important roles in host defense and microbial control. Despite their natural origin, antimicrobial spectrum and potency, the lead peptide candidates that so far have entered pharmaceutical development have all been further optimized by rational or semi-rational approaches. In recent years, several high throughput screening (HTS) systems have been developed to specifically address optimization of AMPs. These include a range of computational in silico systems and cell-based in vivo systems. The in silico-based screening systems comprise several computational methods such as Quantitative Structure/Activity Relationships (QSAR) as well as simulation methods mimicking peptide/membrane interactions. The in vivo-based systems can be divided in cis-acting and trans-acting screening systems. The cis-acting pre-screens, where the AMP exerts its antimicrobial effect on the producing cell, allow screening of millions or even billions of lead candidates for their basic antimicrobial or membrane-perturbating activity. The trans-acting screens, where the AMP is secreted or actively liberated from the producing cell and interacts with cells different from the producing cell, allow for screening under more complex and application-relevant conditions. This review describes the application of HTS systems employed for AMPs and lists advantages as well as limitations of these systems.  相似文献   

4.
Encapsulation can be a suitable strategy to protect natural antimicrobial substances against some harsh conditions of processing and storage and to provide efficient formulations for antimicrobial delivery. Lipid-based nanostructures, including liposomes, solid lipid nanoparticles (SLNs), and nanostructured lipid nanocarriers (NLCs), are valuable systems for the delivery and controlled release of natural antimicrobial substances. These nanostructures have been used as carriers for bacteriocins and other antimicrobial peptides, antimicrobial enzymes, essential oils, and antimicrobial phytochemicals. Most studies are conducted with liposomes, although the potential of SLNs and NLCs as antimicrobial nanocarriers is not yet fully established. Some studies reveal that lipid-based formulations can be used for co-encapsulation of natural antimicrobials, improving their potential to control microbial pathogens.  相似文献   

5.
Antimicrobial peptides (AMPs) are effector molecules of the innate immune system. AMPs have a broad antimicrobial spectrum and lyse microbial cells by interaction with biomembranes. Besides their direct antimicrobial function, they have multiple roles as mediators of inflammation with impact on epithelial and inflammatory cells influencing diverse processes such as cytokine release, cell proliferation, angiogenesis, wound healing, chemotaxis, immune induction, and protease-antiprotease balance. Furthermore, AMPs qualify as prototypes of innovative drugs that may be used as antibiotics, anti-lipopolysaccharide drugs, or modifiers of inflammation. This review summarizes the current knowledge about the basic and applied biology of antimicrobial peptides and discusses features of AMPs in host defense and inflammation.  相似文献   

6.
Microbial biofilms are represented by sessile microbial communities with modified gene expression and phenotype, adhered to a surface and embedded in a matrix of self-produced extracellular polymeric substances (EPS). Microbial biofilms can develop on both prosthetic devices and tissues, generating chronic and persistent infections that cannot be eradicated with classical organic-based antimicrobials, because of their increased tolerance to antimicrobials and the host immune system. Several complexes based mostly on 3D ions have shown promising potential for fighting biofilm-associated infections, due to their large spectrum antimicrobial and anti-biofilm activity. The literature usually reports species containing Mn(II), Ni(II), Co(II), Cu(II) or Zn(II) and a large variety of multidentate ligands with chelating properties such as antibiotics, Schiff bases, biguanides, N-based macrocyclic and fused rings derivatives. This review presents the progress in the development of such species and their anti-biofilm activity, as well as the contribution of biomaterials science to incorporate these complexes in composite platforms for reducing the negative impact of medical biofilms.  相似文献   

7.
As an alternative to antibiotics, antimicrobial peptides (AMPs) are attracting more and more attention for non-antibiotic antibacterial therapy. However, there are still many issues of AMPs for clinical applications. For example, AMPs are generally positively charged and can be easily cleared during blood circulation. In addition, the cationic AMPs show strong cytotoxicity, which brings potential biosafety risks. In order to address these issues, pH-sensitive polyion nanocomplex is designed for the delivery of AMPs by electrostatic self-assembly of positively charged AMPs Magainin-I and negatively charged 2,3-dimethyl maleic anhydride (DA) modified ε-polylysine (EPL) (EPL-DA). The size and surface charge of the polyion nanocomplex is fully investigated by dynamic laser scattering (DLS) and transmission electron microscope (TEM). Magainin-I loaded polyion nanocomplex is stable in physiological environment (pH 7.4), which can effectively reduce the cytotoxicity of AMPs. In the slightly acidic environment (pH 5.0–6.0) in bacteria infected tissue, the nanocomplex would be disintegrated to positively charged EPL and Magainin-I, thereby restoring antibacterial properties. The excellent antibacterial activity of Magainin-I loaded polyion nanocomplexes is confirmed by a series of in vitro antibacterial experiments. The fabrication of polyion nanocomplex provides an innovative way for the delivery of AMPs.  相似文献   

8.
张静 《化学通报》2021,84(12):1300-1305
快速检测食源性致病菌是预防食源性疾病大量暴发的必要措施。基于生物传感器的食源性病原菌检测技术具有灵敏度高、实时定量、操作简便等优点。抗菌肽(antimicrobial peptides,AMPs)作为识别分子具有稳定性高和成本低的特点,在食源性致病菌的快速检测中得到了广泛的应用。将抗菌肽与生物传感器结合用于食源性致病菌具有潜在的实际应用价值。本文综述了基于抗菌肽的电化学方法和光学方法在食源性致病菌检测的应用,讨论了基于抗菌肽的高灵敏度和可靠检测平台的未来前景和挑战。  相似文献   

9.
Antimicrobial drugs are key tools to prevent and treat bacterial infections. Despite the early success of antibiotics, the current treatment of bacterial infections faces serious challenges due to the emergence and spread of resistant bacteria. Moreover, the decline of research and private investment in new antibiotics further aggravates this antibiotic crisis era. Overcoming the complexity of antimicrobial resistance must go beyond the search of new classes of antibiotics and include the development of alternative solutions. The evolution of nanomedicine has allowed the design of new drug delivery systems with improved therapeutic index for the incorporated compounds. One of the most promising strategies is their association to lipid-based delivery (nano)systems. A drug’s encapsulation in liposomes has been demonstrated to increase its accumulation at the infection site, minimizing drug toxicity and protecting the antibiotic from peripheral degradation. In addition, liposomes may be designed to fuse with bacterial cells, holding the potential to overcome antimicrobial resistance and biofilm formation and constituting a promising solution for the treatment of potential fatal multidrug-resistant bacterial infections, such as methicillin resistant Staphylococcus aureus. In this review, we aim to address the applicability of antibiotic encapsulated liposomes as an effective therapeutic strategy for bacterial infections.  相似文献   

10.
Conventional thermal and chemical treatments used in food preservation have come under scrutiny by consumers who demand minimally processed foods free from chemical agents but microbiologically safe. As a result, antimicrobial peptides (AMPs) such as bacteriocins and nisin that are ribosomally synthesised by bacteria, more prominently by the lactic acid bacteria (LAB) have appeared as a potent alternative due to their multiple biological activities. They represent a powerful strategy to prevent the development of spore-forming microorganisms in foods. Unlike thermal methods, they are natural without an adverse impact on food organoleptic and nutritional attributes. AMPs such as nisin and bacteriocins are generally effective in eliminating the vegetative forms of spore-forming bacteria compared to the more resilient spore forms. However, in combination with other non-thermal treatments, such as high pressure, supercritical carbon dioxide, electric pulses, a synergistic effect with AMPs such as nisin exists and has been proven to be effective in the inactivation of microbial spores through the disruption of the spore structure and prevention of spore outgrowth. The control of microbial spores in foods is essential in maintaining food safety and extension of shelf-life. Thus, exploration of the mechanisms of action of AMPs such as nisin is critical for their design and effective application in the food industry. This review harmonises information on the mechanisms of bacteria inactivation from published literature and the utilisation of AMPs in the control of microbial spores in food. It highlights future perspectives in research and application in food processing.  相似文献   

11.
Non-healing wounds cause hundreds of thousands of deaths every year, and result in large costs for society. A key reason for this is the prevalence of challenging bacterial infections, which may dramatically hinder wound healing. With resistance development among bacteria against antibiotics, this situation has deteriorated during the last couple of decades, pointing to an urgent need for new wound treatments. In particular, this applies to wound dressings able to combat bacterial infection locally in wounds and impaired skin, including those formed by bacteria resistant to conventional antibiotics. Within this context, antimicrobial peptides (AMPs) are currently receiving intense interest. AMPs are amphiphilic peptides, frequently net positively charged, and with a sizable fraction of hydrophobic amino acids. Through destabilization of bacterial membranes, neutralization of inflammatory lipopolysaccharides, and other mechanisms, AMPs can be designed for potent antimicrobial effects, also against antibiotics-resistant strains, and to provide immunomodulatory effects while simultaneously displaying low toxicity. While considerable attention has been placed on AMP optimization and clarification of their mode(s)-of-action, much less attention has been paid on efficient AMP delivery. Considering that AMPs are large molecules, net positively charged, amphiphilic, and susceptible to infection-mediated proteolytic degradation, efficient in vivo delivery of such peptides is, however, challenging and delivery systems needed for the realization of AMP-based therapeutics. In the present work, recent developments regarding AMP delivery systems for treatment of wounds and skin infections are discussed, with the aim to link results from physicochemical studies on, e.g., peptide loading/release, membrane interactions, and self-assembly, with those on the biological functional performance of AMP delivery systems in terms of antimicrobial effects, cell toxicity, inflammation, and wound healing.  相似文献   

12.
Current wound healing treatments such as bandages and gauzes predominantly rely on passively protecting the wound and do not offer properties that increase the rate of wound healing. While these strategies are strong at protecting any infection after application, they are ineffective at treating an already infected wound or assisting in tissue regeneration. Next‐generation wound healing treatments are being developed at a rapid pace and have a variety of advantages over traditional treatments. Features such as gas exchange, moisture balance, active suppression of infection, and increased cell proliferation are all central to developing the next successful wound healing dressing. Electrospinning has already been shown to have the qualities required to be a key technique of next generation polymer‐based wound healing treatments. Combined with antimicrobial peptides (AMPs), electrospun dressings can indeed become a formidable solution for the treatment of both acute and chronic wounds. The literature on combining electrospinning and AMPs is now starting to increase and this review aims to give a comprehensive overview of the current developments that combine electrospinning technology and AMPs in order to make multifunctional fibers effective against infection in wound healing.  相似文献   

13.
Host defense peptides (HDPs) are a group of antimicrobial peptides (AMPs) that are crucial components of the innate immune system of many different organisms. These small peptides actively kill microbes and prevent infection. Despite the presence of AMPs in the amphibian immune system, populations of these organisms are in decline globally. Magainin is an AMP derived from the African clawed frog (Xenopus laevis) and has displayed potent antimicrobial effects against a wide variety of microbes. Included in this group of microbes are known pathogens of the African clawed frog and other amphibian species. Arguably, the most deleterious amphibious pathogen is Batrachochytrium dendrobatidis, a chytrid fungus. Investigating the mechanism of action of magainin can help understand how to effectively fight off infection. By understanding amphibian AMPs’ role in the frog, a potential conservation strategy can be developed for other species of amphibians that are susceptible to infections, such as the North American green frog (Rana clamitans). Considering that population declines of these organisms are occurring globally, this effort is crucial to protect not only these organisms but the ecosystems they inhabit as well.  相似文献   

14.
Protein and peptide drugs are predominantly administered by injection to achieve high bioavailability, but this greatly compromises patient compliance. Oral and transdermal drug delivery with minimal invasiveness and high adherence represent attractive alternatives to injection administration. However, oral and transdermal administration of bioactive proteins must overcome biological barriers, namely the gastrointestinal and skin barriers, respectively. The rapid development of new materials and technologies promises to address these physiological obstacles. This review provides an overview of the latest advances in oral and transdermal protein delivery, including chemical strategies, synthetic nanoparticles, medical microdevices, and biomimetic systems for oral administration, as well as chemical enhancers, physical approaches, and microneedles in transdermal delivery. We also discuss challenges and future perspectives of the field with a focus on innovation and translation.  相似文献   

15.
Recently, great progress has been achieved in development of a wide variety of formulations for gene delivery in vitro and in vivo, which include lipids, peptides and DNA (LPD). Additionally, application of natural histone–DNA complexes (chromatin) in combination with transfection lipids has been suggested as a potential route for gene delivery (chromofection). However, the thermodynamic mechanisms responsible for formation of the ternary lipid–peptide–DNA supramolecular structures have rarely been analyzed. Using recent experimental studies on LPD complexes (including mixtures of chromatin with cationic lipids) and general polyelectrolyte theory, we review and analyze the major determinants defining the internal structure, particle composition and size, surface charge and ultimately, transfection properties of the LPD formulations.  相似文献   

16.
Antimicrobial peptides (AMPs) are being intensively investigated as they are considered promising alternatives to antibiotics where their clinical efficacy is dwindling due to the emergence of antimicrobial resistance (AMR). Accompanying with the development of AMPs, a number of fluorescent probes have been developed to facilitate the understanding the modes of action of AMPs. These probes have been used to monitor the binding process, determine the working mechanism and evaluate the antimicrobial properties of AMPs. In particular, with the recent advance of aggregation-induced emission (AIE) fluorophores, that show many advantageous properties over traditional probes, there is an increasing research interest in using AIE probes for AMP studies. In this review, we give an overview of AMP development, highlight the recent progress of using fluorescence probes in particularly AIE probes in the AMP field and propose the future perspective of developing potent antimicrobial agents to combat AMR.  相似文献   

17.
There is an urgent need to develop new therapeutic strategies to fight the emergence of multidrug resistant bacteria. Many antimicrobial peptides (AMPs) have been identified and characterized, but clinical translation has been limited partly due to their structural instability and degradability in physiological environments. The use of unnatural backbones leading to foldamers can generate peptidomimetics with improved properties and conformational stability. We recently reported the successful design of urea-based eukaryotic cell-penetrating foldamers (CPFs). Since cell-penetrating peptides and AMPs generally share many common features, we prepared new sequences derived from CPFs by varying the distribution of histidine- and arginine-type residues at the surface of the oligourea helix, and evaluated their activity on both Gram-positive and Gram-negative bacteria as well as on fungi. In addition, we prepared and tested new amphiphilic block cofoldamers consisting of an oligourea and a peptide segment whereby polar and charged residues are located in the peptide segment and more hydrophobic residues in the oligourea segment. Several foldamer sequences were found to display potent antibacterial activities even in the presence of 50% serum. Importantly, we show that these urea-based foldamers also possess promising antifungal properties.  相似文献   

18.
Phosphorescent metal complexes are a new kind of multifunctional antitumor compounds that can integrate imaging and antitumor functions in a single molecule. In this minireview, we summarize the recent research progress in this field, concentrating on the theranostic applications of phosphorescent iridium(iii), ruthenium(ii) and rhenium(i) complexes. The molecular design that affords these complexes with tumour- or subcellular organelle-targeting properties is elucidated. The potential of these complexes to induce and monitor the dynamic behavior of subcellular organelles and the changes in microenvironment during the process of therapy is demonstrated. Moreover, the potential and advantages of applying new technologies, such as super-resolution imaging and phosphorescence lifetime imaging, are also described. Finally, the challenges faced in the development of novel theranostic metallo-anticancer complexes for possible clinical translation are proposed.

The recent development in phosphorescent iridium, ruthenium and rhenium complexes as theranostic anticancer agents is summarized.  相似文献   

19.
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting.  相似文献   

20.
Biomaterials based on non‐active polymers functionalized with antimicrobial agents by covalent modification or mixing are currently regarded as high potential solutions to prevent biomaterial associated infections that are major causes of biomedical device failure. Herewith a strategy is proposed in which antimicrobial materials are prepared by simply mixing‐and‐matching of ureido‐pyrimidinone (UPy) based supramolecular polymers with antimicrobial peptides (AMPs) modified with the same UPy‐moiety. The N‐terminus of the AMPs was coupled in solution to an UPy‐carboxylic acid synthon resulting in formation of a new amidic bond. The UPy‐functionalization of the AMPs did not affect their secondary structure, as proved by circular dichroism spectroscopy. The antimicrobial activity of the UPy‐AMPs in solution was also retained. In addition, the incorporation of UPy‐AMPs into an UPy‐polymer was stable and the final material was biocompatible. The addition of 4 mol % of UPy‐AMPs in the UPy‐polymer material protected against colonization by Escherichia coli, and methicillin‐sensitive and ‐resistant strains of Staphylococcus aureus. This modular approach enables a stable but dynamic incorporation of the antimicrobial agents, allowing at the same time for the possibility to change the nature of the polymer, as well as the use of AMPs with different activity spectra. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2018 , 56, 1926–1934  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号