首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
In this paper, we investigate the estimation of semi-varying coefficient models when the nonlinear covariates are prone to measurement error. With the help of validation sampling, we propose two estimators of the parameter and the coefficient functions by combining dimension reduction and the profile likelihood methods without any error structure equation specification or error distribution assumption. We establish the asymptotic normality of proposed estimators for both the parametric and nonparametric parts and show that the proposed estimators achieves the best convergence rate. Data-driven bandwidth selection methods are also discussed. Simulations are conducted to evaluate the finite sample property of the estimation methods proposed.  相似文献   

2.
To reconstruct a function from its sampling value is not always exact, error may arise due to a lot of reasons, therefore error estimation is useful in reconstruction. For non-uniform sampling in shift invariant space, three kinds of errors of the reconstruction formula are discussed in this article. For every kind of error, we give an estimation. We find the accuracy of the reconstruction formula mainly depends on the decay property of the generator and the sampling function.  相似文献   

3.
This paper analyses the bit error rate (BER) of the spatial modulation orthogonal frequency division multiplex (SM-OFDM) system and derives the optimal power allocation between the data and the pilot symbols by minimizing the upper bound for the BER operating with imperfect channel estimation. Furthermore, we prove the proposed optimal power allocation scheme applies to all generalized linear interpolation techniques with the minimum mean square error (MMSE) channel estimation . Simulation results show that employing the proposed optimal power allocation provides a substantial gain in terms of the average BER performance for the SM-OFDM system compared to its equal-power-allocation counterpart.  相似文献   

4.
Cognitive radio (CR) is a revolutionary technology in wireless communications that enhances spectrum utilization by allowing opportunistic and dynamic spectrum access. One of the key challenges in this domain is how CR users cooperate to dynamically access the available spectrum opportunities in order to maximize the overall perceived throughput. In this paper, we consider the coordinated spectrum access problem in a multi-user single-transceiver CR network (CRN), where each CR user is equipped with only one half-duplex transceiver. We first formulate the dynamic spectrum access as a rate/power control and channel assignment optimization problem. Our objective is to maximize the sum-rate achieved by all contending CR users over all available spectrum opportunities under interference and hardware constraints. We first show that this problem can be formulated as a mixed integer nonlinear programming (MINLP) problem that is NP-hard, in general. By exploiting the fact that actual communication systems have a finite number of available channels, each with a given maximum transmission power, we transfer this MINLP into a binary linear programming problem (BLP). Due to its integrality nature, this BLP is expected to be NP-hard. However, we show that its constraint matrix satisfies the total unimodularity property, and hence our problem can be optimally solved in polynomial time using linear programming (LP). To execute the optimal assignment in a distributed manner, we then present a distributed CSMA/CA-based random access mechanism for CRNs. We compare the performance of our proposed mechanism with reference CSMA/CA channel access mechanisms designed for CRNs. Simulation results show that our proposed mechanism significantly improves the overall network throughput and preserves fairness.  相似文献   

5.
When powerful numerical tools like the finite element method encounter their limits for the evaluation of physical systems it is very common to use surrogate models as an approximation. There are many possible choices concerning the model approach, among which Gaussian process models are the most popular ones due to their clear statistical basis. A very desirable attribute of such surrogates is a high flexibility for making them applicable to a great class of underlying problems while obtaining interpretable results. To achieve this Gaussian processes are used as basis functions of an additive model in this work. Another important property of a surrogate is stability, which can be especially challenging when it comes to the estimation of the correlation parameters. To solve this we use a Bayesian approach where a reference prior is assigned to each component of the additive model assuring robust correlation matrices. Due to the additive structure of the model a simplified parameter estimation process is proposed that reduces the usually high-dimensional optimization problem to a few sub-routines of low dimension. Finally, we demonstrate this concept by modeling the magnetic field of a magnetic linear position detection system.  相似文献   

6.
In this paper, we present a novel and numerically efficient algorithm for vector channel and calibration vector estimation, which works when frequency offset error caused by either unstable oscillator or Doppler effect is present in Spread Spectrum antenna system. We propose an estimation algorithm based on Gauss–Seidal algorithm rather than using eigen-decomposition or SVD in computing eigenvalues and eigenvectors at each iteration. The algorithm is based on the two-step procedures, one for estimating both channel and frequency offset and the other for estimating the unknown array gain and phase. Consequently, estimates of the DOAs, the multi-path impulse response of the reference signal source, and the carrier frequency offset as well as the calibration of antenna array are provided. The analytic performance improvement in multiplications number is presented. The performance of the proposed algorithm is investigated by means of computer simulations. Throughout the analytic and computer simulation, we show that the proposed algorithm reduces the number of multiplications by order of one.  相似文献   

7.
This paper focuses on the fault estimation problem for switched systems with partially unknown nonlinear dynamics, actuator and sensor faults, simultaneously. The fault estimation observers are constructed, in which the observer dimension is not fixed and can be selected in a certain range. Both the disturbance decoupling and disturbance attenuation are considered, where the unknown nonlinear dynamics can be decoupled and the effect of modeling error and measurement disturbance is attenuated. Based on the average dwell time and the piecewise Lyapunov function, the observer parameter matrices can be calculated by solving LMIs and matrix equations. Finally, two examples are listed to verify the proposed fault estimation approach.  相似文献   

8.
In the current research, the primary focus is to extend the CVBEM to solving potential problems in three dimensions (3D). This is achieved by applying the CVBEM to three coupled projections of the 3D problem domain, in 2D planes, and then superimposing the resulting corresponding 2D CVBEM solutions. The new 3D CVBEM technique is also applied towards improving 3D problem approximations, which are based on the usual 3D boundary element method (BEM) techniques, by approximating the 3D BEM residual error. Finally, a technique to extend a 3D problem geometry into higher geometric dimensions is introduced, and a corresponding numeric error reduction technique is advanced for use in superimposing multiple dimension approximations to improve 3D approximations. © 2000 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 16: 535–560, 2000.  相似文献   

9.
Bayesian networks with mixtures of truncated exponentials (MTEs) support efficient inference algorithms and provide a flexible way of modeling hybrid domains (domains containing both discrete and continuous variables). On the other hand, estimating an MTE from data has turned out to be a difficult task, and most prevalent learning methods treat parameter estimation as a regression problem. The drawback of this approach is that by not directly attempting to find the parameter estimates that maximize the likelihood, there is no principled way of performing subsequent model selection using those parameter estimates. In this paper we describe an estimation method that directly aims at learning the parameters of an MTE potential following a maximum likelihood approach. Empirical results demonstrate that the proposed method yields significantly better likelihood results than existing regression-based methods. We also show how model selection, which in the case of univariate MTEs amounts to partitioning the domain and selecting the number of exponential terms, can be performed using the BIC score.  相似文献   

10.
This paper deals with nonparametric regression estimation under arbitrary sampling with an unknown distribution. The effect of the distribution of the design, which is a nuisance parameter, can be eliminated by conditioning. An upper bound for the conditional mean squared error of kNN estimates leads us to consider an optimal number of neighbors, which is a random function of the sampling. The corresponding estimate can be used for nonasymptotic inference and is also consistent under a minimal recurrence condition. Some deterministic equivalents are found for the random rate of convergence of this optimal estimate, for deterministic and random designs with vanishing or diverging densities. The proposed estimate is rate optimal for standard designs.  相似文献   

11.
Series models have several functions: comprehending the functional dependence of variable of interest on covariates, forecasting the dependent variable for future values of covariates and estimating variance disintegration, co-integration and steady-state relations. Although the regression function in a time series model has been extensively modeled both parametrically and nonparametrically, modeling of the error autocorrelation is mainly restricted to the parametric setup. A proper modeling of autocorrelation not only helps to reduce the bias in regression function estimate, but also enriches forecasting via a better forecast of the error term. In this article, we present a nonparametric modeling of autocorrelation function under a Bayesian framework. Moving into the frequency domain from the time domain, we introduce a Gaussian process prior to the log of the spectral density, which is then updated by using a Whittle approximation for the likelihood function (Whittle likelihood). The posterior computation is simplified due to the fact that Whittle likelihood is approximated by the likelihood of a normal mixture distribution with log-spectral density as a location shift parameter, where the mixture is of only five components with known means, variances, and mixture probabilities. The problem then becomes conjugate conditional on the mixture components, and a Gibbs sampler is used to initiate the unknown mixture components as latent variables. We present a simulation study for performance comparison, and apply our method to the two real data examples.  相似文献   

12.
In this paper we review and we extend the reduced basis approximation and a posteriori error estimation for steady Stokes flows in affinely parametrized geometries, focusing on the role played by the Brezzi’s and Babu?ka’s stability constants. The crucial ingredients of the methodology are a Galerkin projection onto a low-dimensional space of basis functions properly selected, an affine parametric dependence enabling to perform competitive Offline-Online splitting in the computational procedure and a rigorous a posteriori error estimation on field variables. The combinatiofn of these three factors yields substantial computational savings which are at the basis of an efficient model order reduction, ideally suited for real-time simulation and many-query contexts (e.g. optimization, control or parameter identification). In particular, in this work we focus on (i) the stability of the reduced basis approximation based on the Brezzi’s saddle point theory and the introduction of a supremizer operator on the pressure terms, (ii) a rigorous a posteriori error estimation procedure for velocity and pressure fields based on the Babu?ka’s inf-sup constant (including residuals calculations), (iii) the computation of a lower bound of the stability constant, and (iv) different options for the reduced basis spaces construction. We present some illustrative results for both interior and external steady Stokes flows in parametrized geometries representing two parametrized classical Poiseuille and Couette flows, a channel contraction and a simple flow control problem around a curved obstacle.  相似文献   

13.
In this paper, we propose an efficient spectral‐Galerkin method based on a dimension reduction scheme for eigenvalue problems of Schrödinger equations. Firstly, we carry out a truncation from a three‐dimensional unbounded domain to a bounded spherical domain. By using spherical coordinate transformation and spherical harmonic expansion, we transform the original problem into a series of one‐dimensional eigenvalue problem that can be solved effectively. Secondly, we introduce a weighted Sobolev space to treat the singularity in the effective potential. Using the property of orthogonal polynomials in weighted Sobolev space, the error estimate for the approximate eigenvalues and corresponding eigenfunctions are proved. Error estimates show that our numerical method can achieve spectral accuracy for approximate eigenvalues and eigenfunctions. Finally, we give some numerical examples to demonstrate the efficiency of our algorithms and the correctness of the theoretical results.  相似文献   

14.
《Optimization》2012,61(2-3):143-160
In the first part, different characterizations for the dimension of the feasible set in linear semi-infinite programming are provided. They involve the corresponding dimensions of some parameter sets, as the consequent inequalities cone and its lineality subspace. The remaining sections of the paper deal with Farkas–Minkowski systems. The third section is devoted to establish some results concerning the optimal set and its dimension, exploiting its strong relation with a particular parameter cone

associated with the corresponding unstable constraints. The last section approaches the finite reducibility problem. We have intended to characterize those finite subproblems with the same optimal value as the original problem, by means of a simplc dual analysis, based on the main results derived before.  相似文献   

15.
确定Lotka-Volterra生态系统模型高精度参数的研究   总被引:1,自引:0,他引:1  
研究确定Lotka-Volterra生态系统模型的高精度参数估计问题.利用周期性,先对测量数据进行预处理;然后用三种不同的方法构造了误差函数,进行非线性最小二乘法参数估计;再用计算机仿真对其进行验证.结果表明该方法能够有效地解决高精度参数估计中消除测量数据误差的问题.  相似文献   

16.
有势场逆问题的边界元法   总被引:5,自引:0,他引:5  
本文给出了位势方程逆问题的一种最小二乘边界元解法。控制方程为Laplace方程,但一部分边界上未给出任何边值,而只在某些内点上给出了势函值。这一问题在数学上属不适定问题,但在一定条件下存在唯一解。本文同时给出了一种估计解的可靠性的方法。数值试验表明,这类逆问题采用边界元法是非常有效的。  相似文献   

17.
The coupling of finite elements and boundary elements is analyzed, where in the FEM domain we assume an incompressible elastic material governed by a uniformly monotone operator and use a Stokes‐type mixed FEM. In the BEM domain, linear elasticity is considered. We prove existence and uniqueness of the solution and quasi‐optimal convergence of a Galerkin method. We derive an a posteriori error estimator of explicit residual type. © 2001 John Wiley & Sons, Inc. Numer Methods Partial Differential Eq 17: 79–92, 2001  相似文献   

18.
This paper proposes an innovative Bayesian sequential censored sampling inspection method to improve the inspection level and reduce the sample size in acceptance test plans for continuous lots. A mathematical model of Bayesian sequential censored sampling is built, where a new inspection parameter is created and two types of risk are modified. As the core of Bayesian risk formulas, a new structure method of the prior distribution is presented by combining the empirical distribution with the uncertainty of the estimation. To improve the fitting accuracy of parameter estimation, an adaptive genetic algorithm is applied and compared with different parameter estimation methods. In the prior distribution, a prior estimator is introduced to design a sampling plan for continuous lots. Then, three types of producer's and consumer's risks are derived and compared. The simulation results indicate that the modified Bayesian sampling method performs well, with the lowest risks and the smallest sample size. Finally, a new sequential censored sampling plan for continuous lots is designed for the accuracy acceptance test of an aircraft. The test results show that compared with the traditional single sampling plan, the sample size is reduced by 66.7%, saving a vast amount of test costs.  相似文献   

19.
In this work, we consider linear elliptic problems posed in long domains, i.e. the domains whose size in one coordinate direction is much greater than the size in the other directions. If the variation of the coefficients and right‐hand side along the emphasized direction is small, the original problem can be reduced to a lower‐dimensional one that is supposed to be much easier to solve. The a‐posteriori estimation of the error stemming from the model reduction constitutes the goal of the present work. For general coefficient matrix and right‐hand side of the equation, the reliable and efficient error estimator is derived that provides a guaranteed upper bound for the modelling error, exhibits the optimal asymptotics as the size of the domain tends to infinity and correctly indicates the local error distribution. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In this paper, we develop a semi-parametric Bayesian estimation approach through the Dirichlet process (DP) mixture in fitting linear mixed models. The random-effects distribution is specified by introducing a multivariate skew-normal distribution as base for the Dirichlet process. The proposed approach efficiently deals with modeling issues in a wide range of non-normally distributed random effects. We adopt Gibbs sampling techniques to achieve the parameter estimates. A small simulation study is conducted to show that the proposed DP prior is better at the prediction of random effects. Two real data sets are analyzed and tested by several hypothetical models to illustrate the usefulness of the proposed approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号